【題目】魔術(shù)師為大家表演魔術(shù).他請觀眾想一個數(shù),然后將這個數(shù)按以下步驟操作:

魔術(shù)師立刻說出觀眾想的那個數(shù).
(1)如果小明想的數(shù)是﹣1,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是;
(2)如果小聰想了一個數(shù)并告訴魔術(shù)師結(jié)果為93,那么魔術(shù)師立刻說出小聰想的那個數(shù)是;
(3)觀眾又進行了幾次嘗試,魔術(shù)師都能立刻說出他們想的那個數(shù),請你說出其中的奧妙.

【答案】
(1)4
(2)x=88
(3)解:設(shè)觀眾想的數(shù)為a.
因此,魔術(shù)師只要將最終結(jié)果減去5,就能得到觀眾想的數(shù)了
【解析】解:(1)(﹣1×3﹣6)÷3+7=4;
故填:4;(2)設(shè)這個數(shù)為x,
(3x﹣6)÷3+7=93;
解得:x=88;
(1)直接將-1代入魔術(shù)師給出的步驟計算即可;(2)按照魔術(shù)師給出的步驟反推即可;(3)魔術(shù)師只要將最終結(jié)果減去5,就能得到觀眾想的數(shù)了。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】px2y,則-x10y5·(2x2y)3的計算結(jié)果是( )

A. 8p8 B. 8p8 C. 6p8 D. 6p8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠4,∠BOD= ∠AOB=90°.下列判斷:①射線OF是∠BOE的角平分線;②∠DOE的補角是∠BOC;③∠AOC的余角只有∠COD;④∠DOE的余角有∠BOE和∠COD;⑤∠COD=∠BOE.其中正確的有( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a3(3an-2am+4ak)=3a9-2a6+4a4,則mn,k的值分別為(

A. 63,1 B. 36,1 C. 2,1,3 D. 2,3,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是平行四邊形紙片ABCD的BC邊上一點,以過點P的直線為折痕折疊紙片,使點C,D落在紙片所在平面上C′,D′處,折痕與AD邊交于點M;再以過點P的直線為折痕折疊紙片,使點B恰好落在C′P邊上B′處,折痕與AB邊交于點N.若∠MPC=75°,則∠NPB′=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年要實現(xiàn)大病保險全覆蓋,中央財政安排城鄉(xiāng)醫(yī)療救助補助資金160億元,160億元這一數(shù)據(jù)用科學記數(shù)法表示為( )
A.16×109
B.1.6×1010
C.0.16×1011
D.1.6×109

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.求證:BF=2CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.

(1)求證:1=2;

(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD交于點O,∠1=∠2,∠3:∠1=8:1,求∠4的度數(shù).

查看答案和解析>>

同步練習冊答案