【題目】已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求經(jīng)過點(diǎn)O,C,A三點(diǎn)的拋物線的解析式.
(2)若點(diǎn)M是拋物線上一點(diǎn),且位于線段OC的上方,連接MO、MC,問:點(diǎn)M位于何處時三角形MOC的面積最大?并求出三角形MOC的最大面積.
(3)拋物線上是否存在一點(diǎn)P,使∠OAP=∠BOC?若存在,請求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2+2x;(2),;(3)存在,P(,)或(﹣,﹣)
【解析】
(1)根據(jù)折疊的性質(zhì)可得OC=OA,∠BOC=∠BAO=30°,過點(diǎn)C作CD⊥OA于D,求出OD、CD,然后寫出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)求出直線OC的解析式,根據(jù)點(diǎn)M到OC的最大距離時,面積最大;平行于OC的直線與拋物線只有一個交點(diǎn),利用根的判別式求出m的值,利用銳角三角函數(shù)的定義求解即可;
(3)分兩種情況求出直線AP與y軸的交點(diǎn)坐標(biāo),然后求出直線AP的解析式,與拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo).
解:(1)∵Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處,
∴OC=OA=2,∠BOC=∠BAO=30°,
∴∠AOC=30°+30°=60°,
過點(diǎn)C作CD⊥OA于D,
則OD=×2=,
CD=2×=3,
所以,頂點(diǎn)C的坐標(biāo)為(,3),
設(shè)過點(diǎn)O,C,A拋物線的解析式為為y=ax2+bx,
則,
解得:,
∴拋物線的解析式為y=﹣x2+2x;
(2)∵C(,3),
∴直線OC的解析式為:,
設(shè)點(diǎn)M到OC的最大距離時,平行于OC的直線解析式為,
聯(lián)立,
消掉未知數(shù)y并整理得,,
△=()2-4m=0,
解得:m=.
∴,
∴;
∴點(diǎn)M到OC的最大距離=×sin30°=;
∵,
∴;
此時,M,最大面積為;
(3)∵∠OAP=∠BOC=∠BOA =30°,
∴,
∴直線AP與y軸的交點(diǎn)坐標(biāo)為(0,2)或(0,﹣2),
當(dāng)直線AP經(jīng)過點(diǎn)(,0)、(0,2)時,解析式為,
聯(lián)立,
解得,.
所以點(diǎn)P的坐標(biāo)為(,),
當(dāng)直線AP經(jīng)過點(diǎn)(,0)、(0,﹣2)時,解析式為,
聯(lián)立
解得,;
所以點(diǎn)P的坐標(biāo)為(,).
綜上所述,存在一點(diǎn)P(,)或(﹣,﹣),使∠OAP=∠BOA.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC和BD交于點(diǎn)O,分別過點(diǎn)C. D作CE∥BD,DE∥AC,CE和DE交于點(diǎn)E.
(1)求證:四邊形ODEC是矩形;
(2)當(dāng)∠ADB=60°,AD=2時,求EA的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2020年初新冠肺炎疫情爆發(fā)以來,國內(nèi)經(jīng)濟(jì)--度被按下暫停鍵,如今隨著國內(nèi)疫情防控形勢持續(xù)向好,各地開始進(jìn)人積極復(fù)工復(fù)產(chǎn)的新模式.某商家為降低疫情帶來的影響,刺激消費(fèi),吸引顧客,特此設(shè)計了一個游戲,其規(guī)則是:分別轉(zhuǎn)動如圖所示的兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各一次,每次指針落在每一字母區(qū)域的機(jī)會均等(若指針恰好落在分界線上則重轉(zhuǎn)),當(dāng)兩個轉(zhuǎn)盤的指針?biāo)缸帜赶嗤瑫r,消費(fèi)者就可以獲得一次八折優(yōu)惠價購買商品的機(jī)會.
(1)用樹狀圖或列表的方法表示出游戲可能出現(xiàn)的所有結(jié)果;
(2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價購買商品的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有3個分別寫有數(shù)字﹣2,0,1的小球,它們除了數(shù)字不同以外其余完全相同,先從盒子里隨機(jī)抽取1個小球,再從剩下的小球中抽取1個,將這兩個小球上的數(shù)字依次記為a,b,則滿足關(guān)于x的方程x2+ax+b=0有實數(shù)根的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,A、B、C均是⊙O的點(diǎn),點(diǎn)D是∠BAC的平分線與⊙O的交點(diǎn),若∠BAC=120°,則弦BD的長為 _____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為 ;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關(guān)系如圖1所示.
小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)
B.駱駝從0時到時刻之間的最高體溫與當(dāng)日最低體溫的差
C.駱駝在時刻的體溫與當(dāng)日平均體溫的絕對差
D.駱駝從0時到時刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動點(diǎn)(與點(diǎn)C,B不重合),連接AP,延長BC至點(diǎn)Q,使得∠PAC=∠QAC,過點(diǎn)Q作射線QH交線段AP于H,交AB于點(diǎn)M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示線段QC和BM之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為個單位長度的小正方形組成的的網(wǎng)格中,給出了格點(diǎn)(網(wǎng)格線的交點(diǎn))為端點(diǎn)的線段
(1)將線段通過平移使得點(diǎn)和點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)為,則應(yīng)該先將線段向 平移個單位,再向上平移 個 單位,畫出平移后對應(yīng)的線段;
(2)將線段繞點(diǎn)按順時針方向旋轉(zhuǎn)點(diǎn)的對應(yīng)點(diǎn)為 ,畫出線段
(3)填空:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com