定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)點.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)點.

精英家教網(wǎng)

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)點.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)點.(作圖工具不限,不寫作法,但要有必要的說明)
(3)判斷下列命題的真假,在括號內(nèi)填“真”或“假”.
①任意凸四邊形一定存在準內(nèi)點.(______)
②任意凸四邊形一定只有一個準內(nèi)點.(______)
③若P是任意凸四邊形ABCD的準內(nèi)點,則PA+PB=PC+PD或PA+PC=PB+PD.(______)

精英家教網(wǎng)
(1)如圖2,過點P作PG⊥AB,PH⊥BC,PI⊥CD,PJ⊥AD
∵EP平分∠DEC
∴PJ=PH.(3分)
同理PG=PI.(1分)
∴P是四邊形ABCD的準內(nèi)點.(1分)

(2)

精英家教網(wǎng)
(4分)
平行四邊形對角線AC,BD的交點P1就是準內(nèi)點,如圖3(1).
或者取平行四邊形兩對邊中點連線的交點P1就是準內(nèi)點,如圖3(2);
梯形兩腰夾角的平分線與梯形中位線的交點P2就是準內(nèi)點.如圖4.

(3)真;真;假.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)點.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)點.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)點.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)點.(作圖工具不限,不寫作法,但要有必要的說明)
(3)判斷下列命題的真假,在括號內(nèi)填“真”或“假”.
①任意凸四邊形一定存在準內(nèi)點.(

②任意凸四邊形一定只有一個準內(nèi)點.(

③若P是任意凸四邊形ABCD的準內(nèi)點,則PA+PB=PC+PD或PA+PC=PB+PD.(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)心.
(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準外心.那么你認為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準外心.那么你認為Q是______和______的交點.

查看答案和解析>>

同步練習冊答案