【題目】問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.

1)在AB邊上取點E,使AE4,連接OAOE;

2)在BC邊上取點F,使BF______,連接OF;

3)在CD邊上取點G,使CG______,連接OG;

4)在DA邊上取點H,使DH______,連接OH.由于AE__________________________________________.可證SAOES四邊形EOFBS四邊形FOGCS四邊形GOHDSHOA

【答案】(1)見解析;(23;(32;(41EB、BF;FC、CG;GD、DH;HA

【解析】

利用菱形四條邊相等,分別在四邊上進行截取和連接,得出AE=EB+BF=FC+CG+GD+DH

=HA,進一步求得SAOES四邊形EOFBS四邊形FOGCS四邊形GOHDSHOA.即可.

1)在AB邊上取點E,使AE4,連接OA,OE;

2)在BC邊上取點F,使BF3,連接OF

3)在CD邊上取點G,使CG2,連接OG

4)在DA邊上取點H,使DH1,連接OH

由于AEEBBFFCCGGDDHHA

可證SAOES四邊形EOFBS四邊形FOGCS四邊形GOHDSHOA

故答案為:3,2,1EB、BF;FC、CG;GD、DHHA

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P點是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80cos53°≈0.60,tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線AB是頂點為B,與y軸交于點A的拋物線 的一部分,曲線BC是雙曲線的一部分,由點C開始不斷重復(fù)“A-B-C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上, =_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線與雙曲線的一個交點是

1)求的值;

2)設(shè)點是雙曲線上一點,直線軸交于點.若,結(jié)合圖象,直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關(guān)系.則下列說法正確的是(

A.兩車同時到達乙地

B.轎車在行駛過程中進行了提速

C.貨車出發(fā)3小時后,轎車追上貨車

D.兩車在前80千米的速度相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AB5cm,點MAB上且AM1cm,點P是半圓O上的動點,過點BBQPMPM(或PM的延長線)于點Q.設(shè)PMxcm,BQycm.(當(dāng)點P與點A或點B重合時,y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

1

1.5

2

2.5

3

3.5

4

y/cm

0

3.7

______

3.8

3.3

2.5

______

2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l1yk1x+bA0,﹣3),B5,2),直線l2yk2x+2

1)求直線l1的表達式;

2)當(dāng)x≥4時,不等式k1x+bk2x+2恒成立,請寫出一個滿足題意的k2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是作三角形一邊上的高的尺規(guī)作圖過程.

已知:ABC

求作:ABC的邊BC上的高AD

作法:如圖2

1)分別以點B和點C為圓心,BA,CA為半徑作弧,兩弧相交于點E;

2)作直線AEBC邊于點D.所以線段AD就是所求作的高.

請回答:該尺規(guī)作圖的依據(jù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,2AB=2BC=CD=10,tanB=,則AD=______

查看答案和解析>>

同步練習(xí)冊答案