【題目】如圖,若△ABC內一點P滿足∠PAC=∠PCB=∠PBA,則稱點P為△ABC的布羅卡爾點,已知△ABC中,CACB,∠ACB120°,P為△ABC的布羅卡爾點,若,則PB+PC_____

【答案】1+

【解析】

CHABH,首先證明ABBC,再證明△PAB∽△PBC,可得

,即可求出PB、PC.

解:作CHABH

CACB,CHAB,∠ACB120°,

AHBH,∠ACH=∠BCH60°,∠CAB=∠CBA30°,

AB2BH2BCcos30°=BC,

∵∠PAC=∠PCB=∠PBA,

∴∠PAB=∠PBC,

∴△PAB∽△PBC,

,

PA,

PB1,PC,

PB+PC1+,

故答案為:1+.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,RtFEG的兩直角邊EFEG分別交BC、DC于點M、N.若正方形ABCD的邊長為6,則重疊部分四邊形EMCN的面積為( 。

A.24B.9C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圖12,3中,已知,,點為線段上的動點,連接,以為邊向上作菱形,且

1)如圖1,當點與點重合時,________°

2)如圖2,連接

①填空:_________(填“>”“<”,“=”);

②求證:點的平分線上;

3)如圖3,連接,并延長的延長線于點,當四邊形是平行四邊形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線b,c為常數(shù))與x軸交于點,與y軸交于點A,點E為拋物線頂點。

(Ⅰ)當時,求點A,點E的坐標;

(Ⅱ)若頂點E在直線上,當點A位置最高時,求拋物線的解析式;

(Ⅲ)若,當滿足值最小時,求b的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】居民區(qū)內的“廣場舞”引起媒體關注,小王想了解本小區(qū)居民對“廣場舞”的看法,進行一次分四個層次的抽樣調查(四個層次為:A,非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同),并把調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的倍息解答下列問題:

1)本次被抽查的居民人數(shù)是   人,將條形統(tǒng)計圖補充完整.

2)圖中∠α的度數(shù)是   度;該小區(qū)有3000名居民,請估計對“廣場舞”表示贊同(包括A層次和B層次)的大約有人

3)據(jù)了解,甲、乙、丙、丁四位居民投不贊同票,小王想從這四位居民中隨機選擇兩位了解具體情況,請用列表或畫樹狀圖的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】陽春三月,龍泉驛區(qū)的桃花又開了,小明乘坐地鐵到龍泉看桃花,計劃在龍平路地鐵口下車,如圖是龍平路地鐵口的平面圖,其有A、BC、D四個出入口,小明任選一個出口下車出站,賞花結束后,任選一個入口入站乘車.

1)小明從出站到入站共有多少種可能的結果?請用樹形圖或列表說明;

2)求出小明從龍平路同一側出入站的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組

請結合題意填空,完成本題的解答:

I)解不等式①,得_____________________;

(Ⅱ)解不等式②,得_________________________

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

IV)原不等式組的解集為____________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關信息:銷售量(單位:件),銷售單價m(元/件)

(1)請計算第幾天該商品單價為25/件?

(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關于x(天)的函數(shù)關系式;

(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案