19、如圖,若將△ABC沿CA方向平移CA長得△EFA,若△ABC的面積為3cm2,則四邊形BCEF的面積是
9
cm2
分析:根據(jù)題意,△ABC沿CA方向平移CA長得△EFA,故可得S△ABC=S△EFA,S△ABC=S△ABF,故四邊形BCEF的面積=S△ABC+S△EFA+S△ABF
解答:解:∵△ABC沿CA方向平移CA長得△EFA,
∴S△ABC=S△EFA,
∵BF∥CA,且BF=CA,
∴故S△ABC=S△ABF,
∵△ABC的面積為3cm2
∴四邊形BCEF的面積=S△ABC+S△EFA+S△ABF=9cm2
點評:本題考查平移的基本性質(zhì),平移不改變圖形的形狀和大小,即面積不變.注意結合圖形解題的思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,AC=6cm,BC=8cm.
(1)如圖1,將△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
①試求△ACD的周長;
②若∠CAD:∠BAD=4:7,求∠B的度數(shù).
(2)如圖2,將直角邊AC沿直線AM折疊,使點C恰好落在斜邊AB上的點N,BN=4cm,求CM的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一副直角三角板由一塊含30°的直角三角板與一塊等腰直角三角板組成,且含30°角的三角板的較長直角邊與另一三角板的斜邊相等(如圖1)

(1)如圖1,這副三角板中,已知AB=2,AC=
2
3
2
3
,A′D=
6
6

(2)這副三角板如圖1放置,將△A′DC′固定不動,將△ABC通過旋轉或者平移變換可使△ABC的斜邊BC經(jīng)過△A′DC′′的直角頂點D.
方法一:如圖2,將△ABC繞點C按順時針方向旋轉角度α(0°<α<180°)
方法二:如圖3,將△ABC沿射線A′C′方向平移m個單位長度
方法三:如圖4,將△ABC繞點A按逆時針方向旋轉角度β(0°<β<180°)
請你解決下列問題:
①根據(jù)方法一,直接寫出α的值為:
15°
15°
;
②根據(jù)方法二,計算m的值;
③根據(jù)方法三,求β的值.
(3)若將△ABC從圖1位置開始沿射線A′C′平移,設AA′=x,兩三角形重疊部分的面積為y,請直接寫出y與x之間的函數(shù)關系式和相應的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

如圖,若將ABC沿CA方向平移CA長得EFA,ABC的面積為3cm,

則四邊形BCEF的面積是__________.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,若將△ABC沿CA方向平移CA長得△EFA,若△ABC的面積為3cm2,則四邊形BCEF的面積是________cm2

查看答案和解析>>

同步練習冊答案