【答案】
分析:(1)由題點是未知的,因為拋物線與x軸交于A(m-2,0),B(m+2,0),可以把拋物線設(shè)為兩點式,根據(jù)AC⊥BC的關(guān)系解出C點坐標(biāo)從而得到拋物線解析式;
(2)用圖象平移,m為小于零的常數(shù),只需將拋物線向右平移|m|個單位,再向上平移2個單位就可以了;
(3)假設(shè)存在,求出△BOD三個頂點坐標(biāo),則有兩邊相等,從而解出m.
解答:解:(1)設(shè)拋物線的解析式為:y=a(x-m+2)(x-m-2)=a(x-m)
2-4a.(2分)
∵AC⊥BC,由拋物線的對稱性可知:△ACB是等腰直角三角形,又AB=4,
∴C(m,-2)代入得a=
.
∴解析式為:y=
(x-m)
2-2.(5分)
(亦可求C點,設(shè)頂點式)
(2)∵m為小于零的常數(shù),
∴只需將拋物線向右平移|m|個單位,再向上平移2個單位,可以使拋物線y=
(x-m)
2-2頂點在坐標(biāo)原點.(7分)
(3)由(1)得D(0,
m
2-2),設(shè)存在實數(shù)m,使得△BOD等腰三角形.
∵△BOD為直角三角形,
∴只能OD=OB.(9分)
m
2-2=|m+2|,當(dāng)m+2>0時,解得m=4或m=-2(舍).
當(dāng)m+2<0時,解得m=0或m=-2(舍);
∵m=0時,D點坐標(biāo)為(0,-2),在y軸的負(fù)半軸,
∴m=0舍去;
m=2,D點坐標(biāo)為(0,0),也不合題意舍去;
當(dāng)m+2=0時,即m=-2時,B、O、D三點重合(不合題意,舍)
綜上所述:存在實數(shù)m=4,使得△BOD為等腰三角形.(12分)
點評:此題考查拋物性質(zhì),巧妙設(shè)拋物線解析式,還考了三角形垂直性質(zhì)和拋物線的平移,最后探究存在性問題.