二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),下列說(shuō)法:
①若b2-4ac=0,則拋物線的頂點(diǎn)一定在x軸上;
②若b=a+c,則拋物線必經(jīng)過(guò)點(diǎn)(-1,0);
③若a<0,且一元二次方程ax2+bx+c=0有兩根x1,x2(x1<x2),則ax2+bx+c<0的解集為x1<x<x2
④若數(shù)學(xué)公式,則方程ax2+bx+c=0有一根為-3.
其中正確的是________(把正確說(shuō)法的序號(hào)都填上).

①②④
分析:令y=0,利用根的判別式判定頂點(diǎn)在x軸上,令x=-1求出a、b、c的關(guān)系式,判斷②正確;a<0時(shí),拋物線開(kāi)口向下,根據(jù)二次函數(shù)的增減性寫出不等式的解集,判斷③錯(cuò)誤;把已知等式整理得到a、b、c的關(guān)系式,然后判斷出x=-3,從而得到④正確.
解答:令y=0,則ax2+bx+c=0,
∵b2-4ac=0,
∴拋物線與x軸只有一個(gè)交點(diǎn),即頂點(diǎn)一定在x軸上,故①正確;
x=-1時(shí),a-b+c=0,
∴b=a+c,
∴b=a+c,則拋物線必經(jīng)過(guò)點(diǎn)(-1,0)正確,故②正確;
a<0時(shí),二次函數(shù)y=ax2+bx+c圖象開(kāi)口向下,
ax2+bx+c<0的解集為x<x1或x>x2,故③錯(cuò)誤;
∵b=3a+,
∴9a-3b+c=0,
∴a(-3)2+b(-3)+c=0,
∴方程ax2+bx+c=0有一根為-3,故④正確.
綜上所述,正確的是①②④.
故答案為:①②④.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)與x軸的交點(diǎn)問(wèn)題,利用二次函數(shù)圖象求解一元二次不等式,利用特殊值法確定函數(shù)值,綜合題,但難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示.對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案