已知:如圖1,點(diǎn)C為線(xiàn)段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,AN交MC于點(diǎn)E,BM交CN于點(diǎn)F.
(1)求證:AN=BM;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其他條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷第(1)、(2)兩小題的結(jié)論是否仍然成立(不要求證明).

【答案】分析:(1)可通過(guò)全等三角形來(lái)得出簡(jiǎn)單的線(xiàn)段相等,證明AN=BM,只要求出三角形ACN和MCB全等即可,這兩個(gè)三角形中,已知的條件有AC=MC,NC=CB,只要證明這兩組對(duì)應(yīng)邊的夾角相等即可,我們發(fā)現(xiàn)∠ACN和∠MCB都是等邊三角形的外角,因此它們都是120°,這樣就能得出兩三角形全等了.也就證出了AN=BM.
(2)我們不難發(fā)現(xiàn)∠ECF=180-60-60=60°,因此只要我們?cè)僮C得兩條邊相等即可得出三角形ECF是等邊三角形,可從EC,CF入手,由(1)的全等三角形我們知道,∠MAC=∠BMC,
又知道了AC=MC,∠MCF=∠ACE=60°,那么此時(shí)三角形AEC≌三角形MCF,可得出CF=CE,于是我們?cè)俑鶕?jù)∠ECF=60°,便可得出三角形ECF是等邊三角形的結(jié)論.
(3)判定結(jié)論1是否正確,也是通過(guò)證明三角形ACN和BCM來(lái)求得.這兩個(gè)三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此兩三角形就全等,AN=BM,結(jié)論1正確.
根據(jù)圖1,當(dāng)把MC逆時(shí)針旋轉(zhuǎn)90°后,AC也旋轉(zhuǎn)了90°,因此∠ACB=90°,很顯然∠FCE>90°,因此三角形FCE絕對(duì)不可能是等邊三角形.
解答:(1)證明:∵△ACM,△CBN是等邊三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,
即:∠ACN=∠MCB,
在△ACN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△ACN≌△MCB(SAS).
∴AN=BM.

(2)證明:∵△ACN≌△MCB,
∴∠CAN=∠CMB.
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE.
在△CAE和△CMF中
∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,
∴△CAE≌△CMF(ASA).
∴CE=CF.
∴△CEF為等腰三角形.
又∵∠ECF=60°,
∴△CEF為等邊三角形.

(3)解:如右圖,
∵△CMA和△NCB都為等邊三角形,
∴MC=CA,CN=CB,∠MCA=∠BCN=60°,
∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN,
∴△CMB≌△CAN,
∴AN=MB,
結(jié)論1成立,結(jié)論2不成立.
點(diǎn)評(píng):本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn),利用全等三角形來(lái)得出角和邊相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、已知:如圖1,點(diǎn)C為線(xiàn)段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,AN交MC于點(diǎn)E,BM交CN于點(diǎn)F.
(1)求證:AN=BM;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其他條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷第(1)、(2)兩小題的結(jié)論是否仍然成立(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,點(diǎn)C為線(xiàn)段AB上一點(diǎn),△ACM,△CBN是等邊三角形,求證:AN=BM,這時(shí)可以證明
 
 
,得到AN=BM;
(2)如果去掉“點(diǎn)C為線(xiàn)段AB上一點(diǎn)”的條件,而是讓△CBN繞點(diǎn)C精英家教網(wǎng)旋轉(zhuǎn)成圖2的情形,還有“AN=BM”的結(jié)論嗎?如果有,請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:如圖1,點(diǎn)C為線(xiàn)段AB上一點(diǎn),△ACM和△CBN都是等邊三角形,AN、BM交于點(diǎn)P,由△BCM≌△NCA,易證結(jié)論:①BM=AN.

(1)請(qǐng)寫(xiě)出除①外的兩個(gè)結(jié)論:
∠MBC=∠ANC
∠BMC=∠NAC
;
(2)求出圖1中AN和BM相交所得最大角的度數(shù)
120°

(3)將△ACM繞C點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)180°,使A點(diǎn)落在BC上,請(qǐng)對(duì)照原題圖形在圖2中畫(huà)出符合要求的圖形(不寫(xiě)作法,保留痕跡);
(4)探究圖2中AN和BM相交所得的最大角的度數(shù)有無(wú)變化
不變
(填變化或不變);
(5)在(3)所得到的圖形2中,請(qǐng)?zhí)骄俊癆N=BM”這一結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•中山區(qū)二模)已知:如圖1,點(diǎn)O為正方形ABCD內(nèi)任一點(diǎn),連接AO、BO,分別以AO、BO為一邊作如圖所示正方形BOMN和正方形AOFE,連接CN
(1)AE、CN之間有怎樣的關(guān)系?請(qǐng)驗(yàn)證;
(2)若點(diǎn)O是正方形ABCD外部一點(diǎn),如圖2,其他條件不變(1)的結(jié)論是否成立?請(qǐng)驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)已知:如圖,A點(diǎn)坐標(biāo)為(-
32
,0)
,B點(diǎn)坐標(biāo)為(0,3).
(1)求過(guò)A,B兩點(diǎn)的直線(xiàn)解析式;
(2)過(guò)B點(diǎn)作直線(xiàn)BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案