【題目】閱讀:所謂勾股數(shù)就是滿足方程x2+y2=z2的正整數(shù)解,即滿足勾股定理的三個(gè)正整數(shù)構(gòu)成的一組數(shù).我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》一書,在世界上第一次給出該方程的解為:,y=mn,其中m>n>0,mn是互質(zhì)的奇數(shù).應(yīng)用:當(dāng)n=5時(shí),求一邊長(zhǎng)為12的直角三角形另兩邊的長(zhǎng).

【答案】見解析

【解析】分析:由n=5,得到,y=5m③,根據(jù)直角三角形有一邊長(zhǎng)為12,列方程即可得到結(jié)論.

詳解:n=5,直角三角形一邊長(zhǎng)為12,

有三種情況:

當(dāng)x =12 時(shí),

.

解得m1=7,m2= -7(舍去).

y= mn =35.

.

∴該情況符合題意.

當(dāng)y =12時(shí),

5m =12,

.

m為奇數(shù),

舍去.

當(dāng)z =12時(shí),

,

此方程無(wú)實(shí)數(shù)解.

綜上所述:當(dāng)n=5時(shí), 一邊長(zhǎng)為12的直角三角形另兩邊的長(zhǎng)分別為35,37.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),

,于是

遷移應(yīng)用

(1)如圖2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一直線上,連接BD.

(。┣笞C:△ADB≌△AEC;

(ⅱ)請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式.

拓展延伸

(2)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.

(。┳C明:△CEF是等邊三角形;

(ⅱ)若AE=5,CE=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式2x3yxy+16的次數(shù)為a,常數(shù)項(xiàng)為ba,b分別對(duì)應(yīng)著數(shù)軸上的AB兩點(diǎn).

1a   ,b   ;并在數(shù)軸上畫出AB兩點(diǎn);

2)若點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度單位的速度向x軸正半軸運(yùn)動(dòng),求運(yùn)動(dòng)時(shí)間為多少時(shí),點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍;

3)數(shù)軸上還有一點(diǎn)C的坐標(biāo)為30,若點(diǎn)PQ同時(shí)從點(diǎn)A和點(diǎn)B出發(fā),分別以每秒3個(gè)單位長(zhǎng)度和每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),P到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)的終點(diǎn)A,求點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)多少秒時(shí),P,Q兩點(diǎn)之間的距離為4,并求出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系 xOy 中,正比例函數(shù) y=kx 與一次函數(shù) y=x+b 的圖象相交于點(diǎn) A(4,3).過點(diǎn) P(2,0) x 軸的垂線分別交正比例函數(shù)的圖象于點(diǎn) B,交一次函數(shù)的圖象于點(diǎn) C, 連接 OC.

(1)求這兩個(gè)函數(shù)解析式;

(2)OBC 的面積;

(3) x 軸上是否存在點(diǎn) M,使AOM 為等腰三角形? 若存在,直接寫出 M 點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠B54°,AD是△ABC的角平分線.求作AB的垂直平分線MNAD于點(diǎn)E,連接BE;并證明DEDB.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解成都市初中學(xué)生數(shù)學(xué)核心素養(yǎng)的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85100;第二組100115;第三組 115130;第四組 130145;第五組 145160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問題:

(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績(jī)?yōu)榈谖褰M的有多少名學(xué)生?

(2)針對(duì)考試成績(jī)情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名同學(xué)剛好來自第一、五組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BFCE,垂足為F,則tanFBC的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣2分別交x軸、y軸于A、B兩點(diǎn),PAB的中點(diǎn),PCx軸于點(diǎn)C,延長(zhǎng)PC交反比例函數(shù)y=(x<0)的圖象于點(diǎn)D,且ODAB.

(1)求k的值;

(2)連接OP、AD,求證:四邊形APOD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個(gè).比賽結(jié)束后隨機(jī)抽查部分學(xué)生聽寫結(jié)果,圖1,圖2是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.

組別

聽寫正確的個(gè)數(shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息解決下列問題:

1)本次共隨機(jī)抽查了多少名學(xué)生,求出m,n的值并補(bǔ)全圖2的條形統(tǒng)計(jì)圖;

2)求出圖1中∠α的度數(shù);

3)該校共有3000名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案