已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速往返兩地,甲車先到達(dá)B地,停留1小時后按原路返回.設(shè)兩車行駛的時間為x小時,離開A地的距離是y千米,如圖是y與x的函數(shù)圖象.
(1)計算甲車的速度為   千米/時,乙車的速度為   千米/時;
(2)幾小時后兩車相遇;
(3)在從開始出發(fā)到兩車相遇的過程中,設(shè)兩車之間的距離為S千米,乙車行駛的時間為t小時,求S與t之間的函數(shù)關(guān)系式.

(1)100,60;(2);(3)當(dāng)0≤t≤3時,S=40t;當(dāng)3<t≤4時,S=300-60t;當(dāng)4<t≤時,S=60-(60+100)(t-4)=700-160t.

解析試題分析:(1)由圖象直線的斜率能寫出兩車的速度,
(2)根據(jù)函數(shù)圖象設(shè)出兩線的關(guān)系式,列出兩個函數(shù)解析式,聯(lián)立求解,
(3)S與t之間的函數(shù)關(guān)系式是分段函數(shù),在每個時間段中,求出兩車的路程之差.
(1)甲車速度為100千米/小時;乙車速度為60千米/小時;
(2)小時兩車相遇.

設(shè)OC的關(guān)系式為:y=kx,
∵圖象經(jīng)過(5,300),
∴300=5k,
k=60,
∴OC的關(guān)系式為:y=60x,
∵甲車速度為100千米/小時,
∴B(7,0),
設(shè)AB的關(guān)系式為y=kx+b,
∵圖象經(jīng)過A(4,300),B(7,0)
,
解得,
∴AB的關(guān)系式為y=-100x+700,
聯(lián)立兩個函數(shù)關(guān)系式
,解得x=;
(3)當(dāng)0≤t≤3時,S=40t;當(dāng)3<t≤4時,S=300-60t;當(dāng)4<t≤時,S=60-(60+100)(t-4)=700-160t.
考點:一次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線l平行于直線y=2x+1,并與反比例函數(shù)的圖象相交于點A(a,1),求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點.
(1)求一次函數(shù)的解析式和點的坐標(biāo);
(2)點C在x軸上,連接AC交反比例函數(shù)的圖象于點P,且點P恰為線段AC的中點.請直接寫出點P和點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,設(shè)x軸為直線l,函數(shù)的圖像分別是,半徑為1的與直線中的兩條相切,例如是其中一個的圓心坐標(biāo).
(1)寫出其余滿足條件的的圓心坐標(biāo);
(2)在圖中標(biāo)出所有圓心,并用線段依次連接各圓心,求所得幾何圖形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了激發(fā)學(xué)生學(xué)習(xí)英語的興趣,某中學(xué)舉行了校園英文歌曲大賽,并設(shè)立了一、二、三等獎。學(xué)校計劃根據(jù)設(shè)獎情況共買50件獎品,其中購買二等獎獎品件數(shù)比一等獎獎品件數(shù)的2倍件數(shù)還少10件,購買三等獎獎品所花錢數(shù)不超過二等獎所花錢數(shù)的1.5倍,且三等獎獎品數(shù)不能少于前兩種獎品數(shù)之和.其中各種獎品的單價如下表所示,如果計劃一等獎獎品買x件,買50件獎品的總費用是w元.

(1)用含有x的代數(shù)式表示:該校團(tuán)委購買二等獎獎品多少件,三等獎獎品多少件?并表示w與x的函數(shù)關(guān)系式;
(2)請問共有哪幾種方案?
(3)請你計算一下,學(xué)校應(yīng)如何購買這三種獎品,才能使所支出的總費用最少,最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)的圖象在第一象限內(nèi)交于點C,CD⊥x軸于點D,OD=2AO,求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AD=6,A(1,0), B(9,0),直線y=kx+b經(jīng)過B、D兩點.
(1)求直線y=kx+b的表達(dá)式;
(2)將直線y=kx+b平移,當(dāng)它與矩形沒有公共點時,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點,已知一次函數(shù)y=kx+b的圖象上的點A(1,0)及B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)為了了解全校的耗電情況,抽查了10天中全校每天的耗電量,數(shù)據(jù)如下表:

千瓦時
90
93
102
113
114
120
天數(shù)
1
1
2
3
1
2
(1)寫出上表中數(shù)據(jù)的眾數(shù)和平均數(shù).
(2)根據(jù)上題獲得的數(shù)據(jù),估計該校一個月的耗電量(按30天計算).
(3)若當(dāng)?shù)孛壳邥r電的價格是0.5元,寫出該校應(yīng)付電費y(元)與天數(shù)取正整數(shù),單位:天)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案