【題目】如圖,在△ABC中,BC邊上的垂直平分線DE交邊BC于點D,交邊AB于點E.若△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12,則線段DE的長為

【答案】6
【解析】解:∵DE是BC邊上的垂直平分線, ∴BE=CE.
∵△EDC的周長為24,
∴ED+DC+EC=24,①
∵△ABC與四邊形AEDC的周長之差為12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案為:6.
運用線段垂直平分線定理可得BE=CE,再根據(jù)已知條件“△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12”表示出線段之間的數(shù)量關(guān)系,聯(lián)立關(guān)系式后求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果以每月生產(chǎn)180個零件為準,超過的零件數(shù)記作正數(shù),不足的零件數(shù)記作負數(shù),那么1月生產(chǎn)160 個零件記作個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組線段的長度成比例的是( )

A. 6cm、2cm、1cm、4cm B. 4cm、5cm、6cm、7cm

C. 3cm、4cm、5cm、6cm D. 6cm、3cm、8cm、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四邊形的內(nèi)角和等于a,五邊形的外角和等于b,則a與b的關(guān)系是( 。
A.a>b
B.a=b
C.a<b
D.b=a+180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AB=,tanABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設(shè)運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=BCD),得到對應(yīng)線段CF.

(1)求證:BE=DF;

(2)當t= 秒時,DF的長度有最小值,最小值等于 ;

(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,EPQ是直角三角形?

(4)如圖3,將線段CD繞點C順時針旋轉(zhuǎn)一個角α(α=BCD),得到對應(yīng)線段CG.在點E的運動過程中,當它的對應(yīng)點F位于直線AD上方時,直接寫出點F到直線AD的距離y關(guān)于時間t的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個三角形三邊的長度之比為3:5:7,其中最長邊是21cm,則此三角形的最短邊是( )

A.15cmB.12cmC.9cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,﹣2,1四個數(shù)中,最小的數(shù)是(
A.﹣1
B.0
C.﹣2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點E,交BC于點D,CD=3,則BC的長為(
A.6
B.6
C.9
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年約5000名初三學(xué)生參加數(shù)學(xué)中考,從中抽取300名考生的數(shù)學(xué)成績進行分析,則在該調(diào)查中,樣本指的是 (   )

A. 300 B. 300 C. 5000名考生的數(shù)學(xué)成績 D. 300名考生的數(shù)學(xué)成績

查看答案和解析>>

同步練習(xí)冊答案