【題目】如圖所示,直線AB、CD、EF相交于點O,∠AOE=40°,∠BOC=2∠AOC,求∠DOF.

【答案】解:設∠AOC=x°,則∠BOC=(2x)°. 因為∠AOC與∠BOC是鄰補角,所以∠AOC+∠BOC=180°
所以x+2x=180
解得x=60
所以∠AOC=60°.因為∠DOF與∠EOC是對頂角,
所以∠DOF=∠EOC=∠AOC-∠AOE=60°-40°=20°

【解析】圖形中∠BOC與∠AOC互為鄰補角,結(jié)合已知條件:∠BOC=2∠AOC,則可求出∠AOC,要求∠DOF只需求它的對頂角∠EOC即可,本題可用方程求解.
【考點精析】本題主要考查了對頂角和鄰補角的相關(guān)知識點,需要掌握兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC=9cm,BC=6cm,D為BC的中點,動點P從B點出發(fā),以每秒1cm的速度沿B→A→C的路線運動到C停止.設運動時間為t,過D、P兩點的直線將△ABC的周長分成兩個部分,若其中一部分是另一部分的2倍,則此時t的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小河兩岸邊各有一棵樹,分別高30尺和20尺,兩樹的距離是50尺,每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見水面上游出一條魚,它們立刻飛去抓魚,速度相同,并且同時到達目標.則這條魚出現(xiàn)的地方離開比較高的樹的距離為尺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2-2x-8=0,則6x-3x2+18的值是(

A. -6 B. 6 C. 42 D. -42

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實現(xiàn)教育均衡發(fā)展,打造新優(yōu)質(zhì)學校,瑤海區(qū)計劃對A、B兩類薄弱學校全部進行改造,根據(jù)預算,共需資金1575萬元.改造一所A類學校和兩所B類學校共需資金230萬元;改造兩所A類學校和一所B類學校共需資金205萬元,求改造一所A類學校和一所B類學校所需的資金分別是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.

(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了相同的方法進行解決:將△ABD沿AD所在的直線對折得到△ADF(如圖2);請證明小敏的發(fā)現(xiàn)的是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列因式分解正確的是( )

A. ab+ac+ad+1=a(b+c+d)+1

B. (x+1)(x+2)=x2+3x+2

C. a3+3a2b+a=a(a2+3ab+1)

D. x2-y2=(x+y)(y-x)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(21+2)÷(23)= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,舉行抽獎活動,并規(guī)定:顧客每購買100元的商品,就可隨機抽取一張獎券,抽得獎券“紫氣東來”、“花開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈購物券;如果顧客不愿意抽獎,可以直接獲得購物券10元。小明購買了100元的商品,他看到商場公布的前10000張獎券的抽獎結(jié)果如下:

獎券種類

紫氣東來

花開富貴

吉星高照

謝謝惠顧

出現(xiàn)張數(shù)(張)

500

1000

2000

6500


(1)求“紫氣東來”獎券出現(xiàn)的頻率;
(2)請你幫助小明判斷,抽獎和直接獲得購物卷,哪種方式更合算?并說明理由。

查看答案和解析>>

同步練習冊答案