【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

【答案】50°或130°
【解析】解:有兩種情況: ①當(dāng)P在弧EDF上時(shí),∠EPF=∠ENF,
連接OE、OF,
∵圓O是△ABC的內(nèi)切圓,
∴OE⊥AB,OF⊥AC,
∴∠AEO=∠AFO=90°,
∵∠A=80°,
∴∠EOF=360°﹣∠AEO﹣∠AFO﹣∠A=100°,
∴∠ENF=∠EPF= ∠EOF=50°,
②當(dāng)P在弧EMF上時(shí),∠EPF=∠EMF,
∠FPE=∠FME=180°﹣50°=130°,
所以答案是:50°或130°.

【考點(diǎn)精析】本題主要考查了垂線的性質(zhì)和多邊形內(nèi)角與外角的相關(guān)知識(shí)點(diǎn),需要掌握垂線的性質(zhì):1、過一點(diǎn)有且只有一條直線與己知直線垂直.2、垂線段最短;多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2是裝有三個(gè)小輪的手拉車在“爬”樓梯時(shí)的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點(diǎn)H在線段OB時(shí),則 的值是
(2)如果一級(jí)樓梯的高度HE=(8 +2)cm,點(diǎn)H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠A0B=420,點(diǎn)P∠A0B內(nèi)一點(diǎn),分別作出P點(diǎn)關(guān)于OA、OB的對稱點(diǎn)P1,P2,連接P1P2OAM,交OBN,P1P2=15,則△PMN的周長為________,∠MPN ________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.

(1)請判斷:AF與BE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予說明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在AB直線一側(cè)C、D兩點(diǎn),在AB上找一點(diǎn)P,使C、DP三點(diǎn)組成的三角形的周長最短,找出此點(diǎn)并說明理由.

2)如圖2,在AOB內(nèi)部有一點(diǎn)P,是否在OAOB上分別存在點(diǎn)E、F,使得E、FP三點(diǎn)組成的三角形的周長最短,找出EF兩點(diǎn),并說明理由.

3)如圖3,在AOB內(nèi)部有兩點(diǎn)M、N,是否在OA、OB上分別存在點(diǎn)EF,使得E、FM、N,四點(diǎn)組成的四邊形的周長最短,找出E、F兩點(diǎn),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是邊長為1的正方形ABCD對角線AC上一動(dòng)點(diǎn)(P與A、C不重合),點(diǎn)E在射線BC上,且PE=PB.設(shè)AP=x,△PBE的面積為y.則能夠正確反映y與x之間的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)長5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).

(1)求梯子底端B外移距離BD的長度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊ABBC、CA長分別是20、3040,其三條角平分線將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

同步練習(xí)冊答案