【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.
【答案】拋物線解析式為y=x2+1.
【解析】試題分析:由拋物線的頂點(diǎn)為A(0,1)得到拋物線的對(duì)稱軸為y軸,則可判斷C、F點(diǎn)為拋物線上的對(duì)稱點(diǎn),再根據(jù)矩形的面積得到CF=4,則可得到F點(diǎn)的坐標(biāo)為(2,2),然后設(shè)頂點(diǎn)式y=ax2+1,再把F(2,2)代入求出a的值即可.
試題解析:
∵拋物線的頂點(diǎn)為A(0,1),
∴拋物線的對(duì)稱軸為y軸,
∵四邊形CDEF為矩形,
∴C、F點(diǎn)為拋物線上的對(duì)稱點(diǎn),
∵矩形其面積為8,OB=2,
∴CF=4,
∴F點(diǎn)的坐標(biāo)為(2,2),
設(shè)拋物線解析式為y=ax2+1,
把F(2,2)代入得4a+1=2,解得a=,
∴拋物線解析式為y=x2+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.三角形的三條中線必交于三角形內(nèi)一點(diǎn)B.三角形的三條高均在三角形內(nèi)部C.三角形的外角可能等于與它不相鄰的內(nèi)角 D.四邊形具有穩(wěn)定性
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李婷是一位運(yùn)動(dòng)鞋經(jīng)銷商,為了解鞋子的銷售情況,隨機(jī)調(diào)查了9位學(xué)生的鞋子的尺碼,由小到大是:20,21,21,22,22,22,22,23,23.對(duì)這組數(shù)據(jù)的分析中,李婷最感興趣的數(shù)據(jù)代表是( )
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是∠ABC一邊上一點(diǎn)
(1)按下列要求進(jìn)行尺規(guī)作圖: ①作線段BC的中垂線DE,E為垂足.
②作∠ABC的平分線BD.
③連結(jié)CD,并延長交BA于F.
(2)若∠ABC=62°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是 ;如圖2,當(dāng)a= °時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫出這個(gè)關(guān)系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是 ,并求出在這個(gè)變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD與⊙O相切,AD∥BC,連結(jié)OD,AC.
(1)求證:∠B=∠DCA;
(2)若 ,OD= , 求⊙O的半徑長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com