【題目】例:利用函數(shù)圖象求方程x2﹣2x﹣2=0的實數(shù)根(結果保留小數(shù)點后一位).
解:畫出函數(shù)y=x2﹣2x﹣2的圖象,它與x軸的公共點的橫坐標大約是﹣0.7,2.7.所以方程x2﹣2x﹣2=0的實數(shù)根為x1≈﹣0.7,x2≈2.7.我們還可以通過不斷縮小根所在的范圍估計一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.
根據(jù)你對上面教材內容的閱讀與理解,解決下列問題:
(1)利用函數(shù)圖象確定不等式x2﹣4x+3<0的解集是 ;利用函數(shù)圖象確定方程x2﹣4x+3=的解是 .
(2)為討論關于x的方程|x2﹣4x+3|=m解的情況,我們可利用函數(shù)y=|x2﹣4x+3|的圖象進行研究.
①請在網(wǎng)格內畫出函數(shù)y=|x2﹣4x+3|的圖象;
②若關于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解,則m的取值范圍為 ;
③若關于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解x1,x2,x3,x4(x1<x2<x3<x4),滿足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
【答案】(1) 1<x<3,x=4;(2) ①見解析,②0<m<1,③m=0.8
【解析】
畫出圖象,根據(jù)題意通過觀察可求解.
解:(1)x2﹣4x+3=0與x軸的交點為(1,0),(3,0),③m=0.8
∴x2﹣4x+3<0的解集是1<x<3,
畫出函數(shù)y=x2﹣4x+3和函數(shù)y=的圖象,可知x2﹣4x+3=的解為x=4,
故答案為1<x<3,x=4;
(2)①如圖:
②如圖:通過觀察圖象可知:
|x2﹣4x+3|=m有四個不相等的實數(shù)解,0<m<1;
故答案為0<m<1;
③由x4﹣x3=x3﹣x2=x2﹣x1,可得x2、x3是x1x4的三等分點,
由圖可知,m=0.8時,滿足x4﹣x3=x3﹣x2=x2﹣x1.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線上部分點的橫坐標x與縱坐標y的對應值如下表
x | … | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | -4 | 0 | 2 | 2 | 0 | -4 | … |
下列結論:①拋物線開口向下;②當時,y隨x的增大而減。虎蹝佄锞的對稱軸是直線;④函數(shù)的最大值為2.其中所有正確的結論為( )
A.①②③B.①③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB為⊙O的直徑.
(1)如圖a,點D為 的中點,當弦BD=AC時,求∠A.
(2)如圖b,點D為的中點,當AB=6,點E為BD的中點時,求OE的長.
(3)如圖c,點D為上任意一點(不與A、C重合),若點C為的中點,探求BD、AD、CD之間的數(shù)量關系,直接寫出你探求的結論,不要求證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.
(1)當⊙O半徑為1時,
①在中,⊙O的環(huán)繞點是___________;
②直線y=2x+b與x軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應把出水口的高度調節(jié)為高出水面( 。
A.0.55米B.米C.米D.0.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E為BC的中點,將△ABE沿直線AE折疊后,點B落在點F處,AF交對角線BD于點G,則FG的長是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D是半徑OC上一點,且 OD=4.A,B是⊙O上的兩個動點,∠ADB=90°,F是AB的中點,則OF的長的最大值等于______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點O是邊AC的中點.
(1)在圖1中,將△ABC繞點O逆時針旋轉n°得到△A1B1C1,使邊A1B1經過點C.求n的值.
(2)將圖1向右平移到圖2位置,在圖2中,連結AA1、AC1、CC1.求證:四邊形AA1CC1是矩形;
(3)在圖3中,將△ABC繞點O順時針旋轉m°得到△A2B2C2,使邊A2B2經過點A,連結AC2、A2C、CC2.
①請你直接寫出m的值和四邊形AA2CC2的形狀;
②若AB=,請直接寫出AA2的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生準備購買標價為50元的《現(xiàn)代漢語詞典》,現(xiàn)有甲、乙兩書店出售此書,甲店按如下方法促銷:若只購1本,則按原價銷售;若一次性購買多于1本,但不多于30本時,每多購一本,售價在標價的基礎上優(yōu)惠2%(例如買2本,每本售價優(yōu)惠2%;買三本,每本售價優(yōu)惠4%,以此類推);若多于30本,每本售價20元.乙書店一律按標價的6折銷售.
(1)分別寫出在兩書店購買此書總價y甲、y乙與購書本數(shù)x之間的函數(shù)關系式;
(2)若這些學生一次性購買多于30本時,那么去哪家書店購買更劃算,為什么?若要一次性購買不多于30本時,先寫出y(y=y甲﹣y乙)與購買本數(shù)x之間的函數(shù)式,畫出其圖象,再利用函數(shù)圖象分析去哪家書店購買更劃算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com