【題目】如圖,在平面直角坐標系中,OA=OB,AC=CD,已知兩點A(4,0),C(0,7),點D在第一象限內(nèi),∠DCA=90°,點B在線段OC上,AB的延長線與DC的延長線交于點M,AC與BD交于點N.
(1)點B的坐標為: ;
(2)求點D的坐標;
(3)求證:CM=CN.
【答案】(1)(0,4);(2)D(7,11);(3)證明見解析.
【解析】
(1)由A(4,0)和OA=OB即可得到結論;
(2)過點D作DE⊥y軸,垂足為E,證明△DEC≌△COA,即可得到結論;
(3)證明△DBE是等腰直角三角形,得到∠DBE=45°,從而得到∠DBA=90°.在△DNC和△ABN中,根據(jù)三角形內(nèi)角和定理可得出∠CDN=∠BAN,從而證明△DCN≌△ACM,根據(jù)全等三角形對應邊相等即可得出結論.
(1)∵A(4,0),
∴OA=OB=4,
∴B(0,4);
(2)∵C(0,7),
∴OC=7.
過點D作DE⊥y軸,垂足為E,
∴∠DEC=∠AOC=90°.
∵∠DCA=90°,
∴∠1+∠2=∠1+∠3=90°,
∴∠2=∠3,
∴△DEC≌△COA(AAS),
∴DE=OC=7,EC=OA=4,
∴OE=OC+EC=11,
∴D(7,11).
(3)∵BE=OE-OB=11-4=7,
∴BE=DE,
∴△DBE是等腰直角三角形,
∴∠DBE=45°.
∵OA=OB,
∴∠OBA=45°,
∴∠DBA=90°,
∴∠BAN+∠ANB=90°.
∵∠DCA=90°,
∴∠CDN+∠DNC=90°.
∵∠DNC=∠ANB,
∴∠CDN=∠BAN.
∵∠DCA=90°,
∴∠ACM=∠DCN=90°,
∴△DCN≌△ACM(ASA),
∴CM=CN.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: ,點E的坐標: ;
(2)若二次函數(shù)y=﹣x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是線段AC上的一個動點(P與點A、C不重合)連結PB、PD,設L是△PBD的周長,當L取最小值時。
求:①點P的坐標
②判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點D在AB上,以BD為直徑的⊙O切AC于點E,連接DE并延長,交BC的延長線于點F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是弧EB的中點,則下列結論:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一條直線過點,且與拋物線交于A、B兩點,其中點A的橫坐標是-2.
⑴求這條直線的函數(shù)關系式及點B的坐標 ;
⑵在軸上是否存在點C,使得ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;
⑶.過線段AB上一點P,作PM∥軸,交拋物線于點M,點M在第一象限;點,當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】漢諾塔問題是指有三根桿子和套在桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上;
(1)每次只能移動1個碟片.
(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將1號桿子上所有碟片移到2號桿子上,3號桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將l號桿子上的個碟片移動到2號桿子上最少需要次,則( )
A.31次B.33次C.63次D.65次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市正在進行商業(yè)街改造,商業(yè)街起點在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風貌,按照有關規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊繼續(xù)向正東方向修建200m商業(yè)街到C處,則對于從B到C的商業(yè)街改造是否違反有關規(guī)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,DH⊥BC于H,交BE于G.下列結論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點P(0,-2),且與兩條坐標軸截得的直角三角形的面積為6,求這個一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com