如圖所示, 設(shè)l =AB+AD+CD, m=BE+CE, n=BC. 試比較m、n、l的大小, 并說(shuō)明理由.

解:∵m=BE+CE  n=BC

∴n表示了B、C兩點(diǎn)間的距離。所以m>n(兩點(diǎn)之間線段最短)

又∵AD=AE+ED 

∴l(xiāng) = AB+AD+CD=(AB+AE)+(ED+CD)又∵AB+AE>BE   ED+CD>EC (兩點(diǎn)之間線段最短)

∴l(xiāng)>m 

∴l(xiāng)>m>n

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將一根長(zhǎng)24cm的筷子置于底面直徑為5cm,高為12cm的圓柱形水杯中,如圖所示,設(shè)筷子露出在杯子外面長(zhǎng)為hcm,你能求出h的取值范圍嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①所示,直線L:y=mx+5m與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).
(1)當(dāng)OA=OB時(shí),試確定直線L解析式;
精英家教網(wǎng)
(2)在(1)的條件下,如圖②所示,設(shè)Q為AB延長(zhǎng)線上一點(diǎn),連接OQ,過(guò)A、B兩點(diǎn)分別作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的長(zhǎng);
精英家教網(wǎng)
(3)當(dāng)M取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動(dòng),分別以O(shè)B、AB為邊在第一、第二象限作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),問(wèn)當(dāng)點(diǎn)B在y軸上運(yùn)動(dòng)時(shí),試猜想PB的長(zhǎng)是否為定值,若是,請(qǐng)求出其值;若不是,請(qǐng)求其取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州)溫州享有“中國(guó)筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,各地的運(yùn)費(fèi)如圖所示.設(shè)安排x件產(chǎn)品運(yùn)往A地.
(1)當(dāng)n=200時(shí),①根據(jù)信息填表:
A地 B地 C地 合計(jì)
產(chǎn)品件數(shù)(件) x 2x 200
運(yùn)費(fèi)(元) 30x
②若運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過(guò)4000元,則有哪幾種運(yùn)輸方案?
(2)若總運(yùn)費(fèi)為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)y=-
1
4
x2+x+a的圖象的最高點(diǎn)在x軸上.
(1)求a;
(2)如圖所示,設(shè)二次函數(shù)y=-
1
4
x2+x+a圖象與y軸的交點(diǎn)為A,頂點(diǎn)為B,P為圖象上的一點(diǎn),若以線段PB為直徑的圓與直線AB相切于點(diǎn)B,求P點(diǎn)的坐標(biāo);
(3)在(2)中,若圓與x軸另一交點(diǎn)C關(guān)于直線PB的對(duì)稱點(diǎn)為M,試探索點(diǎn)M是否在拋物線y=-
1
4
x2+x+a上?若在拋物線上,求出M點(diǎn)的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,設(shè)M表示平行四邊形,N表示矩形,P表示菱形,Q表示正方形,則下列四個(gè)圖形中,能表示它們之間關(guān)系的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案