某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放量的破裂管道有水部分的截面.

(1)請你補(bǔ)全這個輸水管道的圓形截面;(用尺規(guī)作圖,注意保留作圖痕跡)

(2)若這個輸水管道有水部分的水面寬AB="16" cm,水面最深地方的高度為4 cm,求這個圓形截面的半徑.

 

【答案】

(1)如圖所示;(2)10㎝

【解析】

試題分析:(1)作任意兩條弦的垂直平分線,垂直平分線的交點(diǎn)即為圓心,從而得到結(jié)果;

(2)設(shè)這個圓形截面的半徑為xcm,先根據(jù)垂徑定理定理求得BD的長,再根據(jù)勾股定理列方程求解即可.

(1)先作弦AB的垂直平分線;在弧AB上任取一點(diǎn)C連接AC,作弦AC的垂直平分線,兩線交點(diǎn)作為圓心O,OA作為半徑,畫圓即為所求圖形;

(2)過O作OE⊥AB于D,交弧AB于E,連接OB

∵OE⊥AB

∴BD=AB=×16=8cm

由題意可知,ED=4cm

設(shè)半徑為xcm,則OD=(x-4)cm

在Rt△BOD中,由勾股定理得:

OD2+BD2=OB2

∴(x-4)2+82=x2

解得x=10.

即這個圓形截面的半徑為10cm.

考點(diǎn):垂徑定理、勾股定理

點(diǎn)評:垂徑定理及勾股定理的應(yīng)用是圓中極為重要的知識點(diǎn),是中考常見題,一般難度不大,需熟練掌握.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、我市某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道的半徑,下面是水平放置的破裂管道有水部分的截面.維修人員測得這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,那么管道的半徑是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•市中區(qū)二模)(1)已知:如圖1,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點(diǎn).求證:△ACE≌△BCD
(2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.請你補(bǔ)全這個輸水管道的圓形截面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天橋區(qū)三模)(1)已知:如圖1,?ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.
(2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,則這個圓形截面的半徑為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案