【題目】如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.

旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度;

如果,,求:四邊形的面積.

【答案】(1),;(2)詳見(jiàn)解析.

【解析】

(1)根據(jù)正方形的性質(zhì)得AB=AD,BAD=90,則根據(jù)旋轉(zhuǎn)的定義得到△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90后與△ABF重合;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得BF=DE,=,利用CF=CB+BF=8得到BC+DE=8,再加上

CE=CD-DE=BC-DE=4,于是可計(jì)算出BC=6,所以==36.

:(1)四邊形ABCD為正方形,

AB=AD,BAD=90,

ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90后與△ABF重合,

即旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)了90;

故答案為A,90;

(2) ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90后與△ABF重合,

BF=DE, =,

CF=CB+BF=8,

BC+DE=8,

CE=CD-DE=BC-DE=4,

BC=6,

==6=36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷(xiāo)售,每年產(chǎn)銷(xiāo)x件.已知產(chǎn)銷(xiāo)兩種產(chǎn)品的有關(guān)信息如下表:

產(chǎn)品

每件售價(jià)(萬(wàn)元)

每件成本(萬(wàn)元)

每年其他費(fèi)用(萬(wàn)元)

每年最大產(chǎn)銷(xiāo)量(萬(wàn)元)

10

a

40

200

18

8

40+0.05x2

100

其中a為常數(shù),且5≤a≤8

1)若產(chǎn)銷(xiāo)甲、乙兩種產(chǎn)品的年利潤(rùn)分別為y1萬(wàn)元、y2萬(wàn)元,直接寫(xiě)出y1y2x的函數(shù)關(guān)系式;

2)分別求出產(chǎn)銷(xiāo)兩種產(chǎn)品的最大年利潤(rùn);

3)為獲得最大年利潤(rùn),該公司應(yīng)該選擇產(chǎn)銷(xiāo)哪種產(chǎn)品?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+3在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A,B,P是其對(duì)稱(chēng)軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0,x=3ax2+bx+3=0的一個(gè)根,③△PAB周長(zhǎng)的最小值是+3.其中正確的是( 。

A. ①②③ B. 僅有①② C. 僅有①③ D. 僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯(cuò)誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

圓材埋壁是我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?用現(xiàn)在的數(shù)學(xué)語(yǔ)言表達(dá)是:如圖,的直徑,弦,垂足為,寸,尺,其中1寸,求出直徑的長(zhǎng).

解題過(guò)程如下:

連接,設(shè)寸,則寸.

尺,∴寸.

中,,即,解得,

寸.

任務(wù):

1)上述解題過(guò)程運(yùn)用了 定理和 定理.

2)若原題改為已知寸,尺,請(qǐng)根據(jù)上述解題思路,求直徑的長(zhǎng).

3)若繼續(xù)往下鋸,當(dāng)鋸到時(shí),弦所對(duì)圓周角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)計(jì)劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表.

種產(chǎn)品

種產(chǎn)品

成本(萬(wàn)元)

2

5

利潤(rùn)(萬(wàn)元)

1

3

1)若工廠(chǎng)計(jì)劃獲利14萬(wàn)元,問(wèn),兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

2)若工廠(chǎng)計(jì)劃投入資金不多于44萬(wàn)元,且獲利多于22萬(wàn)元,問(wèn)工廠(chǎng)有哪幾種生產(chǎn)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)y=ax2-3ax-2x軸于ABAB右)兩點(diǎn),交y軸于點(diǎn)C,過(guò)CCDx軸,交拋物線(xiàn)于點(diǎn)DE(-2,3)在拋物線(xiàn)上.

1)求拋物線(xiàn)的解析式;

2P為第一象限拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)PPFCD,垂足為F,連接PEy軸于G,求證:FGDE;

3)如圖2,在(2)的條件下,過(guò)點(diǎn)FFMPEM.若∠OFM=45°,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的半徑為2,圓心的坐標(biāo)為,點(diǎn)上的任意一點(diǎn),,且軸分別交于、兩點(diǎn),若點(diǎn)、點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則的最大值為(

A.7B.14C.6D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案