試題分析:(1)連結(jié)BC,
∵A(10,0),∴OA=10,CA=5,
∵∠AOB=30°,
∴∠ACB="2∠AOB=60°,"
∴弧AB的長=
;……4分
(2)連結(jié)OD,
∵OA是⊙C直徑,∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分線,
∴OD=OA=10,
在Rt△ODE中,
OE=
,
∴AE=AO-OE=10-6=4,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴
,即
,∴EF=3;……8分
(3)設(shè)OE=x,
①當交點E在O,C之間時,由以點E、C、F為頂點的三角形與△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,當∠ECF=∠BOA時,此時△OCF為等腰三角形,點E為OC中點,即OE=
,
∴E1(
,0);
當∠ECF=∠OAB時,有CE=5-x,AE=10-x,
∴CF∥AB,有CF=
,
∵△ECF∽△EAD,
∴
,即
,解得:
,
∴E2(
,0);
②當交點E在點C的右側(cè)時,
∵∠ECF>∠BOA,
∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO,
連結(jié)BE,
∵BE為Rt△ADE斜邊上的中線,
∴BE=AB=BD,
∴∠BEA=∠BAO,
∴∠BEA=∠ECF,
∴CF∥BE,∴
,
∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴
,
而AD=2BE,∴
,
即
,解得
,
<0(舍去),
∴E3(
,0);
③當交點E在點O的左側(cè)時,
∵∠BOA=∠EOF>∠ECF.
∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO
連結(jié)BE,得BE=
=AB,∠BEA=∠BAO
∴∠ECF=∠BEA,
∴CF∥BE,
∴
,
又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴
,
而AD=2BE,∴
,
∴
,解得
,
<0(舍去),
∵點E在x軸負半軸上,∴E4(
,0),
綜上所述:存在以點E、C、F為頂點的三角形與△AOB相似,此時點E坐標為:
(
,0)、
(
,0)、
(
,0)、
(
,0).(12分)
點評:解答本題的關(guān)鍵是熟練掌握相似三角形的性質(zhì):相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.