【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)y=,的圖象和性質(zhì)進(jìn)行了探究探究過(guò)程如下,請(qǐng)補(bǔ)充完成:

1)函數(shù)y=的自變量x的取值范圍是   ;

2)下表是yx的幾組對(duì)應(yīng)值.請(qǐng)直接寫(xiě)出m,n的值:m=   ;n=   

x

2

1

0

n

2

3

4

 y

m

0

1

3

5

3

2

3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

4)通過(guò)觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)y=k0)的圖象形狀相同,是中心對(duì)稱(chēng)圖形,且點(diǎn)(﹣1,m)和(3,)是一組對(duì)稱(chēng)點(diǎn),則其對(duì)稱(chēng)中心的坐標(biāo)為   

5)當(dāng)2≤x≤4時(shí),關(guān)于x的方程kx+=有實(shí)數(shù)解,求k的取值范圍.

【答案】1x≠1;(2;;(3)見(jiàn)解析;(4)(11);(5k

【解析】

1)根據(jù)分式有意義的條件即可解答;

2)當(dāng)x=1求出對(duì)應(yīng)函數(shù)值,當(dāng)y=3時(shí)求出對(duì)應(yīng)x的值即可;

3)利用描點(diǎn)法畫(huà)出函數(shù)圖象即可;

4)根據(jù)函數(shù)的圖像和對(duì)稱(chēng)中心的概念即可解答;

5)根據(jù)兩函數(shù)圖像的交點(diǎn)情況即可解答.

解:(1)函數(shù)y=的自變量x的取值范圍是x≠1

故答案為x≠1

2x=1時(shí),y=,

m=

當(dāng)y=3時(shí),則3=,解得x=,

n=,

故答案為,

3)函數(shù)圖像如圖所示:

4)該函數(shù)的圖象關(guān)于點(diǎn)(1,1)成中心對(duì)稱(chēng),

故答案為(1,1);

5)當(dāng)2≤x≤4時(shí),函數(shù)y=中,y≤2,

x=4y=代入函數(shù)y=kx+得,=4k+,解得k=,

x=2,y=2代入函數(shù)y=kx+2=2k+,解得k=,

關(guān)于x的方程kx+=有實(shí)數(shù)解,k的取值范圍是k

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個(gè)圖形中共有_____個(gè)點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分如圖,在四邊形ABCD中,ADBC,AE=2EB,AD=2,BC=5,EFDC,交BC于點(diǎn)F,連接AF

1求CF的長(zhǎng);

2BFE=FAB,求AB的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM的長(zhǎng)度為(  )

A. B. 2 C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過(guò)點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長(zhǎng)為1,當(dāng)t為何值時(shí),1的長(zhǎng)最大,并求最大值;(先根據(jù)題目畫(huà)圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫(xiě)出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△A1B1C1,當(dāng)CB1,C1三點(diǎn)共線時(shí),旋轉(zhuǎn)角為α,連接BB1,交于AC于點(diǎn)D,下面結(jié)論:

①△AC1C為等腰三角形;②CACB1;③α135°;④△AB1D∽△ACB1;⑤中,正確的結(jié)論的序號(hào)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B5,0)兩點(diǎn),直線y=﹣ x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)PPFx軸于點(diǎn)F,交 線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)求PE的長(zhǎng)最大時(shí)m的值.

3Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以P、Q、CD為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,請(qǐng)直接寫(xiě)出存在 個(gè)滿(mǎn)足題意的點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線圖象的一部分,拋物線的頂點(diǎn)是,對(duì)稱(chēng)軸是直線,且拋物線與軸的一個(gè)交點(diǎn)為;直線的解析式為.下列結(jié)論:①;②;③方程有兩個(gè)不相等的實(shí)數(shù)根;④拋物線與軸的另一個(gè)交點(diǎn)是;⑤當(dāng)時(shí),則.其中正確的是(

A.①②B.①③⑤C.①④D.①④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案