【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?

【答案】解:過C點(diǎn)作CG⊥AB于點(diǎn)G,

∴GC=BD=3米,GB=CD=2米.

∵∠NMF=∠AGC=90°,NF∥AC,

∴∠NFM=∠ACG,

∴△NMF∽△AGC,

,

∴AG= = =6,

∴AB=AG+GB=6+2=8(米),故電線桿子的高為8米.


【解析】把直角梯形ABCD分割成一個(gè)直角三角形和一個(gè)矩形,由于太陽光線是平行的,就可以構(gòu)造出相似三角形了.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的應(yīng)用,掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

1)(﹣8+3+10+(﹣2

2)(﹣2×(﹣6÷(﹣

3)(﹣1100×2+(﹣23÷4

42a3b+32b3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù),根據(jù)所測(cè)數(shù)據(jù)不能求出A,B間距離的是( 。

A.BC,∠ACB
B.DE,DC,BC
C.EF,DE,BD
D.CD,∠ACB,∠ADB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在反比例函數(shù)y= 的圖象上,過點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,CDABD

1)圖中有幾個(gè)直角三角形;

2)若AD=12AC=13,則CD等于多少;

3)若CD2=AD·DB 求證:ABC是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】?jī)蓚(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時(shí),根據(jù)題意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負(fù)責(zé)送貨,向東走了4千米到達(dá)小明家,繼續(xù)向東走了1.5千米到達(dá)小紅家,然后向西走了8.5千米到達(dá)小剛家,最后返回百貨大樓.

1)以百貨大樓為原點(diǎn),向東為正方向,1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點(diǎn)A表示,小紅家用點(diǎn)B表示,小剛家用點(diǎn)C表示)

2)小明家與小剛家相距多遠(yuǎn)?

3)若貨車每千米耗油1.5升,那么這輛貨車此次送貨共耗油多少升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在ABC中,ABAC,分別以ABBC為邊作等邊ABE和等邊BCD,連結(jié)CE、AD

1)求證:∠ACD=∠ABD;

2)判斷DCCE的位置關(guān)系,并加以證明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,四邊形ABCD的四個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)(小正方形的頂點(diǎn)叫格點(diǎn))上,連接BD.

(1)利用格點(diǎn)在圖中畫出ABDAD邊上的高,垂足為H.

(2)①畫出將ABD先向右平移2格,再向上平移2格得到的A1B1D1;

②平移后,求線段AB掃過的部分所組成的封閉圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案