如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,過點D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)如果BC=8,AB=5,求CE的長.
(1)證明:連接OD.
∵OD=OB(⊙O的半徑),
∴∠B=∠ODB(等邊對等角);
∵AB=AC(已知),
∴∠B=∠C(等邊對等角);
∴∠C=∠ODB(等量代換),
∴ODAC(同位角相等,兩直線平行),
∴∠ODE=∠DEC(兩直線平行,內錯角相等);
∵DE⊥AC(已知),
∴∠DEC=90°,
∴∠ODE=90°,即DE⊥OD,
∴DE是⊙O的切線;

(2)連接AD.
∵AB是⊙O的直徑,
∴∠ADB=90°(直徑所對的圓周角是直角);
∴AD⊥CD;
在Rt△ACD和Rt△DCE中,
∠C=∠C(公共角),
∠CED=∠CDA=90°,
∴Rt△ACDRt△DCE(AA),
CE
CD
=
DC
AC
;
又由(1)知,ODAC,O是AB的中點,
∴OD是三角形ABC的中位線,
∴CD=
1
2
BC;
∵BC=8,AB=5,AB=AC,
∴CE=
16
5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰△ABC中,AC=BC=10,以BC為直徑作⊙O交AB于點D,交AC于點G,DF⊥AC于F,交CB的延長線于點E.
(1)求證:直線EF是⊙O的切線;
(2)若sin∠E=
2
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P在⊙O的直徑BA的延長線上,AB=2PA=4cm,PC切⊙O于點C,連接BC,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點C為圓心,R為半徑的圓與邊AB(邊AB為線段)僅有一個公共點,則R的值為(  )
A.R>3B.R=
12
5
C.R=
12
5
或3<R≤4
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,則CD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,兩個半圓,大半圓中長為16cm的弦AB平行于直徑CD,且與小半圓相切,則圖中陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=50°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:∠MAN=60°,點B在射線AM上,AB=4(如圖).P為直線AN上一動點,以BP為邊作等邊三角形BPQ(點B,P,Q按順時針排列),O是△BPQ的外心.
(1)當點P在射線AN上運動時,求證:點O在∠MAN的平分線上;
(2)當點P在射線AN上運動(點P與點A不重合)時,AO與BP交于點C,設AP=x,AC•AO=y,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)若點D在射線AN上,AD=2,圓I為△ABD的內切圓.當△BPQ的邊BP或BQ與圓I相切時,請直接寫出點A與點O的距離.

查看答案和解析>>

同步練習冊答案