24、如圖,O是直線AB上的一點,OD是∠AOC的平分線,OE是∠COB的平分線,則∠DOE=
90
度.
分析:利用角平分線的性質(zhì)和平角的定義計算.
解答:解:∵OD是∠AOC的平分線∴∠AOD=∠DOC
∵OE是∠COB的平分線∴∠COE=∠EOB
∴∠AOD+∠EOB=∠DOC+∠COE
∵∠AOD+∠DOC+∠COE+∠EOB=180°
∴2(∠DOC+∠COE)=180°
即∠DOE=90°.
故填90.
點評:熟記平角的特點與角平分線的性質(zhì)是解決此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O是直線AB上一點,OC,OD,OE是三條射線,且OC平分∠AOD,∠BOE=2∠DOE,∠COE=80°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,O是直線AB上一點,若∠BOC=51°38′,則∠AOC=
128°22′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,O是直線AB上一點,∠AOC=134°18′,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,O是直線AB上的一點,∠AOC=53°17′,則∠BOC的度數(shù)是
126°43′
126°43′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,O是直線AB上任意一點,OC平分∠AOB.按下列要求畫圖并回答問題:
(1)分別在射線OA、OC上截取線段OD、OE,且OE=2OD;
(2)連接DE;
(3)以O(shè)為頂點,畫∠DOF=∠EDO,射線OF交DE于點F;
(4)寫出圖中∠EOF的所有余角:
∠DOF,∠EDO
∠DOF,∠EDO

查看答案和解析>>

同步練習冊答案