【題目】一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,它交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C7 , 若點(diǎn)P(13,m)在第7段拋物線C7上,則m=

【答案】1
【解析】∵y=﹣x(x﹣2)(0≤x≤2),
∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),
∴頂點(diǎn)坐標(biāo)為(1,1),
∴A1坐標(biāo)為(2,0)
∵C2由C1旋轉(zhuǎn)得到,
∴OA1=A1A2 , 即C2頂點(diǎn)坐標(biāo)為(3,﹣1),A2(4,0);
照此類推可得,C3頂點(diǎn)坐標(biāo)為(5,1),A3(6,0);
C4頂點(diǎn)坐標(biāo)為(7,﹣1),A4(8,0);
C5頂點(diǎn)坐標(biāo)為(9,1),A5(10,0);
C6頂點(diǎn)坐標(biāo)為(11,﹣1),A6(12,0);
C7頂點(diǎn)坐標(biāo)為(13,1),A6(14,0);
∴m=1.
故答案為:1。
將這段拋物線C1通過配方法求出頂點(diǎn)坐標(biāo)及拋物線與x軸的交點(diǎn),由旋轉(zhuǎn)的性質(zhì)可以知道C1與C2的頂點(diǎn)到x軸的距離相等,且OA1=A1A2,照此類推可以推導(dǎo)知道點(diǎn)P(11,m)為拋物線C6的頂點(diǎn),從而得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4y軸于點(diǎn)A,與直線BC相交于點(diǎn)B-2,m),直線BCy軸交于點(diǎn)C0-2),與x軸交于點(diǎn)D

1)求點(diǎn)B坐標(biāo);

2)求ABC的面積

3)過點(diǎn)ABC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);

4)在(3)的條件下,點(diǎn)p是直線AB上一動點(diǎn)且在x軸上方,Q為直角坐標(biāo)平面內(nèi)一點(diǎn),如果以點(diǎn)D、EP、Q為頂點(diǎn)的平行四邊形的面積等于ABC面積請求出點(diǎn)P的坐標(biāo).并直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要測量河寬,可在兩岸找到相對的兩點(diǎn)A、B,先從B出發(fā)與AB90°方向向前走50米,到C處立一標(biāo)桿,然后方向不變繼續(xù)朝前走10米到D處,在D處轉(zhuǎn)90°,沿DE方向走到E處,若A、C、E三點(diǎn)恰好在同一直線上,且DE=17米,你能根據(jù)題目提供的數(shù)據(jù)和圖形求出河寬嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC>ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點(diǎn) E,則∠AEC與∠ADC、ABC 之間存在的等量關(guān)系是(

A. AEC=ABC﹣2ADC B. AEC=

C. AEC= ABC﹣ADC D. AEC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),連結(jié)AE、BDAE=AB

1)求證:∠ABE=∠EAD;

2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)為平面內(nèi)一點(diǎn),連接.

1)探究:

如圖1,,則的度數(shù)是___________;

如圖2,,則的度數(shù)是___________.

2)在圖2中試探究,,之間的數(shù)量關(guān)系,并說明理由.

3)拓展探究:當(dāng)點(diǎn)在直線,外,如圖3、4所示的位置時(shí),請分別直接寫出,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形的斜邊軸的正半軸上,點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,且,若將繞著點(diǎn)旋轉(zhuǎn)后30°,點(diǎn)點(diǎn)分別落在點(diǎn)和點(diǎn)處,那么直線的解析式是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2),

1)寫出點(diǎn)A、B的坐標(biāo):A_____,_____)、B_____,_____);

2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△ABC′,寫出A′、B′、C′三點(diǎn)坐標(biāo);

3)求△ABC的面積。

查看答案和解析>>

同步練習(xí)冊答案