【題目】如圖,O的直徑AB=2,DAB的延長線上,DCO相切于點C,連接AC.若∠A=30°,CD長為( )

A. B. C. D.

【答案】D

【解析】

先連接BCOC,由于AB 是直徑,可知∠BCA=90°,而∠A=30°,易求∠CBA,又DC是切線,利用弦切角定理可知∠DCB=A=30°,再利用三角形外角性質(zhì)可求∠D,再由切線的性質(zhì)可得∠BCD=A=30°,∠OCD=90°,易得OD,由勾股定理可得CD

如圖所示,連接BC,OC,

AB是直徑,

∴∠BCA=90°,

又∵∠A=30°,

∴∠CBA=90°30°=60°

DC是切線,

∴∠BCD=A=30°,OCD=90°

∴∠D=CBABCD=60°30°=30°,

AB=2,

OC=1

OD=2,

∴CD=

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MAN=60°,點B在射線AM上,AB=4,點P為直線AN上一動點,以BP為邊作等邊三角形BPQ(點B,P,Q按順時針排列),點O是△BPQ的外心.

(1)如圖1,當OB⊥AM時,點O________∠MAN的平分線上(填“在”或“不在”);

(2)求證:當點P在射線AN上運動時,總有點O在∠MAN的平分線;

(3)當點P在射線AN上運動(點P與點A不重合)時,AO與BP交于點C,設(shè)AP=m,用m表示AC·AO;

(4)若點D在射線AN上,AD=2,圓I為△ABD的內(nèi)切圓.當△BPQ的邊BP或BQ與圓I相切時,請直接寫出點A與點O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點EAB 的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級男生1000米長跑的成績,從中隨機抽取了50名男生進行測試,根據(jù)測試評分標準,將他們的得分進行統(tǒng)計后分為A、B、C、D四等,并繪制成下面的頻數(shù)分布表和扇形統(tǒng)計圖.

等第

成績(得分)

頻數(shù)(人數(shù))

頻率

A

10

7

0.14

9

x

m

B

8

15

0.30

7

8

0.16

C

6

4

0.08

5

y

n

D

5分以下

3

0.06

合計


50

1.00

1)試直接寫出y、mn的值;

2)求表示得分為C等的扇形的圓心角的度數(shù);

3)如果該校九年級共有男生200名,試估計這200名男生中成績達到A等和B等的人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“停課不停學(xué)”期間,某校數(shù)學(xué)興趣小組對本校同學(xué)觀看教學(xué)視頻所使用的工具進行了調(diào)查,并從中隨機抽取部分數(shù)據(jù)進行分析,將分析結(jié)果繪制成了兩幅不完整的統(tǒng)計表與統(tǒng)計圖.

工具

人數(shù)

頻率

手機

44

a

平板

b

0.2

電腦

80

c

電視

20

d

不確定

16

0.08

請根據(jù)上述信息回答下列問題:

1)所抽取出來的同學(xué)共   人,表中a   ,b   

2)請補全條形統(tǒng)計圖;

3)若該校觀看教學(xué)視頻的學(xué)生總?cè)藬?shù)為2500人,則使用電腦的學(xué)生人數(shù)約   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設(shè)銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,的直徑,,垂足為點平分

1的切線嗎?請說明理由;

2)若的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(噸)

C

   

   

240

D

   

x

260

總計(噸)

200

300

500

(2)設(shè)C、D兩市的總運費為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,

1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)字母;(保留作圖痕跡,不寫作法)

為邊在上方外作等邊三角形

的中線

2)計算:的長為_______

查看答案和解析>>

同步練習(xí)冊答案