【題目】如圖所示,一次函數(shù)的圖象與反比例函數(shù)的圖象交于.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上存在一點(diǎn)C,使為等腰三角形,求此時(shí)點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】(1),;(2),,,;(3)-12<x<0或x>3
【解析】
(1)因?yàn)榉幢壤瘮?shù)過(guò)A、B兩點(diǎn),所以可求其解析式和n的值,從而知B點(diǎn)坐標(biāo),進(jìn)而求一次函數(shù)解析式;
(2)分三種情況:OA=OC,AO=AC,CA=CO,分別求解即可;
(3)根據(jù)圖像得出一次函數(shù)圖像在反比例函數(shù)圖像上方時(shí)x的取值范圍即可.
解:(1)把A(3,4)代入,
∴m=12,
∴反比例函數(shù)是;
把B(n,-1)代入得n=12.
把A(3,4)、B(-12,1)分別代入y=kx+b中:
得,
解得,
∴一次函數(shù)的解析式為;
(2)∵A(3,4),△AOC為等腰三角形,OA=,
分三種情況:
①當(dāng)OA=OC時(shí),OC=5,
此時(shí)點(diǎn)C的坐標(biāo)為,;
②當(dāng)AO=AC時(shí),∵A(3,4),點(diǎn)C和點(diǎn)O關(guān)于過(guò)A點(diǎn)且垂直于x軸的直線對(duì)稱,
此時(shí)點(diǎn)C的坐標(biāo)為;
③當(dāng)CA=CO時(shí),點(diǎn)C在線段OA的垂直平分線上,
過(guò)A作AD⊥x軸,垂足為D,
由題意可得:OD=3,AD=4,AO=5,設(shè)OC=x,則AC=x,
在△ACD中,
,
解得:x=,
此時(shí)點(diǎn)C的坐標(biāo)為;
綜上:點(diǎn)C的坐標(biāo)為:,,,;
(3)由圖得:
當(dāng)一次函數(shù)圖像在反比例函數(shù)圖像上方時(shí),
-12<x<0或x>3,
即使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍是:-12<x<0或x>3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,的頂點(diǎn)A在反比例函數(shù)的圖像上,直線AB交y軸于點(diǎn)C,且點(diǎn)C的縱坐標(biāo)為5,過(guò)點(diǎn)A、B分別作y軸的垂線AE、BF,垂足分別為點(diǎn)E、F,且.
(1)若點(diǎn)E為線段OC的中點(diǎn),求k的值;
(2)若為等腰直角三角形,,其面積小于3.
①求證:;
②把稱為,兩點(diǎn)間的“ZJ距離”,記為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在和中,,且,點(diǎn)在的內(nèi)部,連接,,和,并且.
(觀察猜想)
(1)如圖①,當(dāng)時(shí),線段與的數(shù)量關(guān)系為_____,線段的數(shù)量關(guān)系為_______________;
(探究證明)
(2)如圖②,當(dāng)時(shí),(1)中的結(jié)論是否依然成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
(拓展應(yīng)用)
(3)在(2)的條件下,當(dāng)點(diǎn)在線段上時(shí),若,請(qǐng)直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小云在學(xué)習(xí)過(guò)程中遇到一個(gè)函數(shù).下面是小云對(duì)其探究的過(guò)程,請(qǐng)補(bǔ)充完整:
(1)當(dāng)時(shí),對(duì)于函數(shù),即,當(dāng)時(shí),隨的增大而 ,且;對(duì)于函數(shù),當(dāng)時(shí),隨的增大而 ,且;結(jié)合上述分析,進(jìn)一步探究發(fā)現(xiàn),對(duì)于函數(shù),當(dāng)時(shí),隨的增大而 .
(2)當(dāng)時(shí),對(duì)于函數(shù),當(dāng)時(shí),與的幾組對(duì)應(yīng)值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
綜合上表,進(jìn)一步探究發(fā)現(xiàn),當(dāng)時(shí),隨的增大而增大.在平面直角坐標(biāo)系中,畫出當(dāng)時(shí)的函數(shù)的圖象.
(3)過(guò)點(diǎn)(0,m)()作平行于軸的直線,結(jié)合(1)(2)的分析,解決問題:若直線與函數(shù)的圖象有兩個(gè)交點(diǎn),則的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,均為等邊三角形,邊長(zhǎng)分別為,B、C、D三點(diǎn)在同一條直線上,則下列結(jié)論正確的________________.(填序號(hào))
① ② ③為等邊三角形 ④ ⑤CM平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說(shuō)明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150元/千克,售價(jià)為400元千克.因市場(chǎng)變化,準(zhǔn)備低價(jià)一次性處理掉部分存貨,所得貨款全部用來(lái)生產(chǎn)產(chǎn)品,產(chǎn)品售價(jià)為200元/千克.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價(jià)格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)請(qǐng)求出處理價(jià)格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;
(2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時(shí),生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?
(3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了元/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤(rùn)為(元),若時(shí),滿足隨的增大而減小,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)邊長(zhǎng)都為的小正方形組成的網(wǎng)格中,小正方形的頂點(diǎn)叫做格點(diǎn).線段的端點(diǎn)均在格點(diǎn)上.
(1)線段的長(zhǎng)度等于 ;
(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,在圖中畫出,并連結(jié).
(3)在線段上確定一點(diǎn)連結(jié),使得與的面積比為.
說(shuō)明:以上作圖只用無(wú)刻度的直尺畫圖,保留畫圖痕跡,不寫畫法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com