設x=,y=-,求的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分別是邊AB、AC的中點,點P從點D出發(fā)沿DE方向運動,過點P作PQ⊥BC于Q,過點Q作QR‖BA交AC于R,當點Q與點C重合時,點P停止運動.
【小題1】求點D到BC的距離DH的長;
【小題2】設BQ=x, QR=y(tǒng).
① 求y關于x的函數(shù)關系式(0≤x≤10);
② 是否存在點P,使△PQR為等腰三角形?若存在,求出所有滿足要求的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆浙江杭州市第十五中學九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB.OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A.點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省南京學大教育專修學校九年級3月月考數(shù)學試卷(帶解析) 題型:解答題

已知拋物線yax2bxcx軸交于A、B兩點,與y軸交于點C,其中點Bx軸的正半軸上,點Cy軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、BC三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點EEFACBC于點F,連接CE,設AE的長為m,△CEF的面積為S,求Sm之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省九年級3月月考數(shù)學試卷(解析版) 題型:解答題

已知拋物線yax2bxcx軸交于A、B兩點,與y軸交于點C,其中點Bx軸的正半軸上,點Cy軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.

(1)求A、B、C三點的坐標;

(2)求此拋物線的表達式;

(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點EEFACBC于點F,連接CE,設AE的長為m,△CEF的面積為S,求Sm之間的函數(shù)關系式,并寫出自變量m的取值范圍;

(4)在(3)的基礎上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江杭州市九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB.OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.

(1)求A、B、C三點的坐標;

(2)求此拋物線的表達式;

(3)連接AC、BC,若點E是線段AB上的一個動點(與點A.點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;

(4)在(3)的基礎上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案