【題目】如圖,正方形紙片ABCD中,對角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后折痕DE分別交AB、AC于點(diǎn)E、G,連結(jié)GF,給出下列結(jié)論:
①∠ADG=22.5°;②tan∠AED=2;③SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若SOGF=1,則正方形ABCD的面積是6+4
其中正確有

【答案】①④⑤
【解析】解:∵四邊形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折疊的性質(zhì)可得:∠ADG= ∠ADO=22.5°,故①正確.
∵由折疊的性質(zhì)可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE< AB,
>2,
在Rt△ADE中,tan∠AED= >2,故②錯(cuò)誤.
∵∠AOB=90°,
∴AG=FG>OG,△AGD與△OGD同高,
∴SAGD>SOGD , 故③錯(cuò)誤.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四邊形AEFG是菱形,故④正確.
∴∠OGF=∠OAB=45°,
∴EF=GF= OG,
∴BE= EF= × OG=2OG.故⑤正確.
∵四邊形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF時(shí)等腰直角三角形.
∵SOGF=1,
OG2=1,解得OG= ,
∴BE=2OG=2 ,GF= ═2,
∴AE=GF=2,
∴AB=BE+AE=2 +2,
∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥錯(cuò)誤.
∴其中正確結(jié)論的序號是:①④⑤共三個(gè).
所以答案是①④⑤.
【考點(diǎn)精析】利用平行線的性質(zhì)和等腰三角形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x﹣1.

(1)當(dāng)m=1時(shí),求該不等式的解集;

(2)m取何值時(shí),該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來,這個(gè)圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個(gè)數(shù)有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,BC=3,經(jīng)過點(diǎn)C且與邊AB相切的動(dòng)圓與CA、CB分別相交于點(diǎn)P、Q,則線段PQ長度的最小值是(
A.4.75
B.4.8
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為等邊△ABC的邊AC上一點(diǎn),E為直線AB上一點(diǎn),CD=BE.

(1)如圖1,求證;AD=DE;

(2)如圖2,DE交CB于點(diǎn)P.

①若DE⊥AC,PC=6,求BP的長;

②猜想PD與PE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足為E.

(1)求證:DA=DE;

(2)若AD=2,BC=6,求AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在小島A的北偏東60°距小島80海里的B處,沿正西方向航行2小時(shí)后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為海里/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案