【題目】某中學為了創(chuàng)建書香校園,去年購買了一批圖書.其中科普書的單價比文學書的單價多4元,用1200元購買的科普書與用800元購買的文學書本數(shù)相等.
(1)求去年購買的文學書和科普書的單價各是多少元?
(2)若今年文學書的單價比去年提高了,科普書的單價與去年相同,為了普及科普知識,書店舉辦了每買三本科普書就贈一本文學書的優(yōu)惠活動,這所中學今年計劃在優(yōu)惠活動期間,再購進文學書和科普書共200本,且購買文學書和科普書的總費用不超過1880元,這所中學今年最多能購進多少本文學書?
【答案】(1)去年購買的文學書單價為8元,科普書單價為12元;(2)110
【解析】
(1)設(shè)去年購買文學書的單價為x元/本,則購買科普書的單價為(x+4)元/本,根據(jù)數(shù)量=總價÷單價結(jié)合用1200元購買的科普書與用800元購買的文學書本數(shù)相等,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗即可得出結(jié)論;
(2)由今年文學書的單價比去年提高了25%可求出今年文學書的單價,設(shè)今年購進y本文學書,則購進科普書(200-y)本,根據(jù)總價=單價×數(shù)量,再結(jié)合購買文學書和科普書的總費用不超過1880元,即可得出關(guān)于y的一元一次不等式,解之取其最大值即可得出結(jié)論.
解:(1)設(shè)去年購買文學書的單價為x元/本,則購買科普書的單價為(x+4)元/本,
根據(jù)題意得:
解得:x=8,
經(jīng)檢驗:x=8是原分式方程的解,
∴x+4=12.
答:去年購買的文學書單價為8元/本,科普書單價為12元/本.
(2)今年文學書的單價為8×(1+25%)=10(元/本).
設(shè)今年購進y本文學書,則購進科普書(200-y)本,
根據(jù)題意得:,
解得:y≤110,
∴y的最大值為110.
答:今年最多能購進110本文學書.
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為7千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)在30≤x≤12 0之間時具有一次函數(shù)的關(guān)系,如下表所示.
x | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修3千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,連結(jié)CC′,使CC′∥AB.若∠CAB=65°,則旋轉(zhuǎn)的角度為( )
A.65°
B.50°
C.40°
D.35°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙兩個空調(diào)安裝隊分別為A、B兩個公司安裝空調(diào),甲安裝隊為A公司安裝66臺空調(diào),乙安裝隊為B公司安裝60臺空調(diào),甲、乙兩隊安裝空調(diào)所用的總時間相同.已知甲隊比乙隊平均每天多安裝2臺空調(diào),求甲、乙兩個安裝隊平均每天各安裝空調(diào)的臺數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點均在格點上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個四邊形ABCD,使點D在格點上.要求所畫兩個四邊形不全等,且同時滿足四邊形ABCD是軸對稱圖形,點D到∠ABC兩邊的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC=6,∠B=60°,∠D=90°,連結(jié)AC.動點P從點B出發(fā),沿BC以每秒1個單位的速度向終點C運動(點P不與點B、C重合).過點P作PQ⊥BC交AB或AC于點Q,以PQ為斜邊作Rt△PQR,使PR∥AB.設(shè)點P的運動時間為t秒.
(1)當點Q在線段AB上時,求線段PQ的長.(用含t的代數(shù)式表示)
(2)當點R落在線段AC上時,求t的值.
(3)設(shè)△PQR與△ABC重疊部分圖形的面積為S平方單位,求S與t之間的函數(shù)關(guān)系式.
(4)當點R到C、D兩點的距離相等時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若AB∥CD,EF與AB 、CD分別相交于E、F,EP⊥EF,∠EFD的平分線與EP相交于點P,且∠BEP=40°,求∠EFP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為S1、S2、S3;如圖2,分別以直角三角形三個頂點為圓心,三邊長為半徑向外作圓心角相等的扇形,面積分別為S4、S5、S6 . 其中S1=16,S2=45,S5=11,S6=14,則S3+S4=( )
A.86
B.64
C.54
D.48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】與在平面直角坐標系中的位置如圖
(1)分別寫出下列各點的坐標:A′_____;B′______;C′_____.
(2)若點是內(nèi)部一點,則平移后內(nèi)的對應(yīng)點的坐標為_______.
(3)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com