設(shè)三個(gè)二次方程:x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m-1)x2+2mx+m-1=0,它們中至少有一個(gè)方程有實(shí)根,則m的取值范圍是(  )

  A-m-                      Bm-mm1

  Cmm                   D-m

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)一元二次方程x2+px+q=0(p,q為常數(shù))的兩根為x1,x2,則x2+px+q=(x-x1)(x-x2),即x2+px+q=x2-(x1+x2)x+x1x2,比較兩邊x的同次冪的系數(shù),得
x1+x2=-p①
x1x2=q②
這兩個(gè)式子揭示了一元二次方程的根與系數(shù)之間的關(guān)系,且關(guān)系式①②中,x1,x2的地位是對(duì)等的(即具有對(duì)稱(chēng)性,如將x1,x2互換,原關(guān)系式不變).類(lèi)似地,設(shè)一元三次方程x3+px2+qx+r=0(p,q,r為常數(shù))的3個(gè)根為x1,x2,x3,則x3+px2+qx+r=(x-x1)(x-x2)(x-x3).由此可得方程x3+px2+qx+r=0的根x1,x2,x3與系數(shù)p,q,r之間存在一組對(duì)稱(chēng)關(guān)系式:
x1+x2+x3=()
x1x2+x2x3+x3x1=()
x1x2x3=()
 
,
 
,
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在x軸正半軸上,且OB>OA.設(shè)點(diǎn)C(0,-精英家教網(wǎng)4),OA2+OB2=17,線(xiàn)段OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.
(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)上述拋物線(xiàn)的頂點(diǎn)為P,求直線(xiàn)PB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的解題過(guò)程,并回答后面的問(wèn)題:
已知:方程x2-2x-1=0,求作一個(gè)一元二次方程,使它的根是原方程的各根的平方.
解:設(shè)方程x2-2x-1=0的兩個(gè)根是x1、x2,則所求方程的兩個(gè)根是x12、x22
∵x1+x2=2,x1x2=-1      (第一步)
∴x12+x22=(x1+x22-2x1x2    (第二步)
=22-2×(-1)
=6
x12x22=(x1x22=1    (第三步)
請(qǐng)你回答:
(1)第一步的依據(jù)是:
一元二次方程根與系數(shù)的關(guān)系
一元二次方程根與系數(shù)的關(guān)系

(2)第二步變形用到的公式是:
完全平方公式
完全平方公式

(3)第三步變形用到的公式是:
a2b2=(ab)2
a2b2=(ab)2

(4)所求的一元二次方程是:
x2-6x+1=0
x2-6x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•柳州)如圖,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直線(xiàn)為x軸,AB的垂直平分線(xiàn)為y軸,建立直角坐標(biāo)系如圖,請(qǐng)你分別寫(xiě)出A、B、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線(xiàn)的解析式;
(3)若D為拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=
1
2
S△ABC;
(4)如果將(2)中的拋物線(xiàn)向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個(gè)單位時(shí),點(diǎn)C′同時(shí)在以A′B′為直徑的圓上(解答過(guò)程如果有需要時(shí),請(qǐng)參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對(duì)于一些特殊方程可以通過(guò)換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時(shí),即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可設(shè)y=
x2-2
,用同樣的方法也可求解.

查看答案和解析>>

同步練習(xí)冊(cè)答案