【題目】某中學(xué)開(kāi)展菜市場(chǎng)菜價(jià)調(diào)查活動(dòng),以鍛煉同學(xué)們的生活能力.調(diào)查一共連續(xù)7天,每天調(diào)查3次,第一次8:00由各班的A小組調(diào)查,第二次13:00由B小組調(diào)查,第三次17:00由C小組調(diào)查.調(diào)查完后分析當(dāng)天的菜價(jià)波動(dòng)情況,七天調(diào)查結(jié)束后整理數(shù)據(jù),就得出了菜價(jià)最便宜的某一時(shí)段.下面是同學(xué)們的一些調(diào)查情況,請(qǐng)你幫忙分析數(shù)據(jù): 第1天菜價(jià)調(diào)查情況(單位:元/千克) 第2﹣5天平均菜價(jià)(單位:元/千克)
(1)根據(jù)“第2﹣5天平均菜價(jià)”圖來(lái)分析:哪種蔬果價(jià)格最便宜?
(2)從第一天的調(diào)查情況來(lái)看,哪種蔬果的價(jià)格波動(dòng)最?請(qǐng)通過(guò)計(jì)算說(shuō)明.
(3)計(jì)算蘋(píng)果、白菜、土豆在1﹣5天的平均菜價(jià).
(4)根據(jù)上面兩個(gè)圖來(lái)分析:在3﹣5天中的哪一天的哪一時(shí)段購(gòu)買(mǎi)蘋(píng)果最省錢(qián)?
【答案】
(1)解:根據(jù)“第2﹣5天平均菜價(jià)”圖可知,
3元/千克≤蘋(píng)果的價(jià)格≤4元/千克,
4元/千克≤白菜的價(jià)格≤5元/千克,
5元/千克≤土豆的價(jià)格≤6元/千克,
所以蘋(píng)果的價(jià)格最便宜;
(2)解:根據(jù)“第1天菜價(jià)調(diào)查情況”圖可知,
土豆的價(jià)格波動(dòng)范圍是:4﹣3=1(元/千克),
白菜的價(jià)格波動(dòng)范圍是:5﹣3=2(元/千克),
蘋(píng)果的價(jià)格波動(dòng)范圍是:6﹣4=2(元/千克),
所以土豆的價(jià)格波動(dòng)最小
(3)解:第1天的平均菜價(jià)為:
蘋(píng)果: (6+5+4)=5(元/千克),白菜: (5+3+4)=4(元/千克),土豆: (4+4+3)= (元/千克),
它們?cè)?﹣5天的平均菜價(jià)為:
蘋(píng)果: (5+3+4+3+4)= (元/千克),白菜: (4+4+5+4+5)= (元/千克),土豆: ( +5+6+5+6)= (元/千克)
(4)解:根據(jù)上面第一個(gè)圖可知,蘋(píng)果在17:00以后價(jià)格較低,根據(jù)第二個(gè)圖可知,蘋(píng)果在第二天或第四天價(jià)格較低,
所以在3﹣5天中的第四天的17:00購(gòu)買(mǎi)蘋(píng)果最省錢(qián).
【解析】(1)根據(jù)“第2﹣5天平均菜價(jià)”圖可知,蘋(píng)果的價(jià)格最便宜;(2)根據(jù)“第1天菜價(jià)調(diào)查情況”圖,得出這一天每一種蔬菜的最高價(jià)格與最低價(jià)格,再用最高價(jià)格與最低價(jià)格相減比較后即可求出價(jià)格波動(dòng)最小的蔬菜;(3)先分別求出蘋(píng)果、白菜、土豆第1天的平均菜價(jià),再求出它們?cè)?﹣5天的平均菜價(jià);(4)根據(jù)上面第一個(gè)圖可知,蘋(píng)果在17:00以后價(jià)格較低,根據(jù)第二個(gè)圖可知,蘋(píng)果在第二天或第四天價(jià)格較低,進(jìn)而得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解折線統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比,以及對(duì)極差的理解,了解方差的算數(shù)平方根叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差,用“s”表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個(gè)非零數(shù)的商為﹣1;③如果兩個(gè)數(shù)的絕對(duì)值相等,那么這兩個(gè)數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負(fù)有理數(shù);⑤單項(xiàng)式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項(xiàng)式3πa3+4a2﹣8是三次三項(xiàng)式,其中正確的個(gè)數(shù)是( 。
A. 2 個(gè)B. 3 個(gè)C. 4 個(gè)D. 5 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)專賣(mài)店銷售A,B兩種型號(hào)的新能源汽車(chē).上周售出1輛A型車(chē)和3輛B型車(chē),銷售額為96萬(wàn)元;本周已售2輛A型車(chē)和1輛B型車(chē),銷售額為62萬(wàn)元.
(1)求每輛A型車(chē)和B型車(chē)的售價(jià)各多少萬(wàn)元.
(2)甲公司擬向該店購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6輛,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元. 則有哪幾種購(gòu)車(chē)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB:∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=∠ABD,求此時(shí)∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車(chē)先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;
(3)乙出發(fā)后多長(zhǎng)時(shí)間與甲在途中相遇?
(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于點(diǎn)D,過(guò)B作BE⊥ED于點(diǎn)E.
求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長(zhǎng)方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動(dòng)點(diǎn),點(diǎn)D是直線y=-2x+6上的動(dòng)點(diǎn)且在第四象限.若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫(xiě)在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解決提出的問(wèn)題:
最短路徑問(wèn)題:如圖(1),點(diǎn)A,B分別是直線l異側(cè)的兩個(gè)點(diǎn),如何在直線l上找到一個(gè)點(diǎn)C,使得點(diǎn)C到點(diǎn)A,點(diǎn)B的距離和最短?我們只需連接AB,與直線l相交于一點(diǎn),可知這個(gè)交點(diǎn)即為所求.
如圖(2),如果點(diǎn)A,B分別是直線l同側(cè)的兩個(gè)點(diǎn),如何在l上找到一個(gè)點(diǎn)C,使得這個(gè)點(diǎn)到點(diǎn)A、點(diǎn)B的距離和最短?我們可以利用軸對(duì)稱的性質(zhì),作出點(diǎn)B關(guān)于的對(duì)稱點(diǎn)B,這時(shí)對(duì)于直線l上的任一點(diǎn)C,都保持CB=CB,從而把問(wèn)題(2)變?yōu)閱?wèn)題(1).因此,線段AB與直線l的交點(diǎn)C的位置即為所求.
為了說(shuō)明點(diǎn)C的位置即為所求,我們不妨在直線上另外任取一點(diǎn)C′,連接AC′,BC′,B′C′.因?yàn)?/span>AB′≤AC′+C′B′,∴AC+CB<AC'+C′B,即AC+BC最。
任務(wù):
數(shù)學(xué)思考
(1)材料中劃線部分的依據(jù)是 .
(2)材料中解決圖(2)所示問(wèn)題體現(xiàn)的數(shù)學(xué)思想是 .(填字母代號(hào)即可)
A.轉(zhuǎn)化思想
B.分類討論思想
C.整體思想
遷移應(yīng)用
(3)如圖,在Rt△ABC中,∠C=90°,∠BAC=15°,點(diǎn)P為C邊上的動(dòng)點(diǎn),點(diǎn)D為AB邊上的動(dòng)點(diǎn),若AB=8cm,則BP+DP的最小值為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個(gè)幾何體可以是圖2中甲,乙,丙中的______;
這個(gè)幾何體最多由______個(gè)小正方體堆成,最少由______個(gè)小正方體堆成;
請(qǐng)?jiān)趫D3中用陰影部分畫(huà)出符合最少情況時(shí)的一個(gè)從上面往下看得到的圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com