(2006•青神縣二模)如圖,Rt△AOB是一張放在平面直角坐標系中的三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點O與點D重合,折痕為BE.
(1)求點E和點D的坐標;
(2)求經(jīng)過O、D、A三點的二次函數(shù)解析式;
(3)設(shè)直線BE與(2)中二次函數(shù)圖象的對稱軸交于點F,M為OF中點,N為AF中點,在x軸上是否存在點P,使△PMN的周長最小,若存在,請求出點P的坐標和最小值;若不存在,請說明理由.

【答案】分析:(1)根據(jù)折疊的性質(zhì)知:∠EBA=∠BAO=30°,由此可得∠OBE=30°,在Rt△OBE中,根據(jù)直角三角形的性質(zhì)即可求得OE的長,從而得到點E的坐標.同理可在Rt△OAB中,得到OA、OB的長,也就得到了A、B的坐標,由于D是AB的中點,根據(jù)A、B的坐標,即可得到點D的坐標.
(2)已知了拋物線圖象上的三點坐標,利用待定系數(shù)法求解即可.
(3)先求出直線BE的解析式,聯(lián)立拋物線的對稱軸放出,即可得到點F的坐標,進而可求出M、N的坐標;取點M關(guān)于x軸的對稱點M′,M′的坐標易求得,即可得到直線M′N的解析式,那么直線M′N和x軸的交點即為所求的P點,求出P點后,即可得到PM、PN的值,而MN的長為OA的一半,即可得到△PMN的最小周長.
解答:解:(1)據(jù)題意可得∠1=,OB=BD=,DE=OE,
∵Rt△AOB中,∠BAO=30°,
∴∠ABO=60°,OA=3,AB=2,
∴∠1=30°,A(3,0),B(0,).
Rt△EOB中,∵

∴OE=1,∴E點坐標為(1,0);
過點D作DG⊥OA于G,易知D是AB的中點,且A(3,0),B(0,),
則OG=OA=1.5,DG=OB=;
故D(1.5,).

(2)∵二次函數(shù)的圖象經(jīng)過x軸上的O、A兩點,設(shè)二次函數(shù)的解析式為y=a(x-x1)(x-x2);
據(jù)(1)得A點坐標為(3,0),
∴x1=0,x2=3,
把D點坐標(1.5,)代入y=a(x-0)(x-3)
,
∴二次函數(shù)的解析式為

(3)設(shè)直線BE的解析式為y=k1x+b1,把(0,)和(1,0)分別代入y=k1x+b1
得:,
直線BE的解析式為,
∵把x=1.5代入得:,
F點坐標為(1.5,-),M點坐標為(,-),N點坐標為(,-),
M點關(guān)于x軸對稱的點的坐標為M'(),
設(shè)直線M'N的解析式為y=k2x+b2,把(,)和(,-)分別代入y=k2x+b2
得:,
∴直線M'N的解析式為,
把y=0代入
,
∴x軸上存在點P,使△PMN的周長最小,P點坐標為(,0),,,
∴△PMN周長=
點評:此題主要考查了直角三角形的性質(zhì)、二次函數(shù)解析式的確定、三角形中位線定理、平面展開-最短路徑問題等知識,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年吉林省吉林七中分校中考數(shù)學(xué)模擬試卷(周方民)(解析版) 題型:解答題

(2006•青神縣二模)如圖,在正方形網(wǎng)格上,有一個△ABC.
(1)畫出將△ABC以點B為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的△A′B′C′;
(2)若在網(wǎng)格中建立直角坐標系后,點A的坐標為(-3,2),請直接寫出(1)中點A′、B′、C′的坐標.

查看答案和解析>>

同步練習(xí)冊答案