【題目】如圖,在正方形中,,點在正方形邊上沿運動(含端點),連接,以為邊,在線段右側(cè)作正方形,連接、.

小穎根據(jù)學習函數(shù)的經(jīng)驗,在點運動過程中,對線段、、的長度之間的關(guān)系進行了探究.

下面是小穎的探究過程,請補充完整:

1)對于點邊上的不同位置,畫圖、測量,得到了線段、的長度的幾組值,如下表:

位置

位置

位置

位置

位置

位置

位置

、的長度這三個量中,確定 的長度是自變量, 長度和 的長度都是這個自變量的函數(shù).

2)在同一平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象:

3)結(jié)合函數(shù)圖像,解決問題:

為等腰三角形時,的長約為

【答案】1;(2)畫圖見解析;(3

【解析】

1)根據(jù)表格的數(shù)據(jù),結(jié)合自變量與函數(shù)的定義,即可得到答案;

2)根據(jù)列表、描點、連線,即可得到函數(shù)圖像;

3)可分為AE=DF,DF=DG,AE=DG,結(jié)合圖像,即可得到答案.

解:(1)根據(jù)表格可知,0開始,而且不斷增大,則DG是自變量;

隨著DG的變化而變化,則AEDF都是DG的函數(shù);

故答案為:,,.

2)函數(shù)圖像,如圖所示:

3)∵為等腰三角形,則可分為:

AE=DFDF=DGAE=DG,三種情況;

根據(jù)表格和函數(shù)圖像可知,

①當AE=DG=時,為等腰三角形;

②當AE=時,DF=DG=5.00為等腰三角形;

③當AE=DF=時,為等腰三角形;

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線與軸相交于點,點,與軸相交于點與拋物線的對稱軸相交于點.

1)求該拋物線的表達式,并直接寫出點的坐標;

2)過點交拋物線于點,求點的坐標;

3)在(2)的條件下,點在射線上,若相似,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(4,0)兩點,與y軸交于點C(0,3).

(1)求拋物線的解析式;

(2)在x軸下方的拋物線上是否存在一點P,使△PAB的面積等于△ABC的面積?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦BC=2,點A是優(yōu)弧BC上一動點(不包括端點),ABC的高BD、CE相交于點F,連結(jié)ED.下列四個結(jié)論:

①∠A始終為60°;

②當∠ABC=45°時,AE=EF;

③當ABC為銳角三角形時,ED=

④線段ED的垂直平分線必平分弦BC.

其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,對角線AC,BD相交于點O.

(1)如圖1,點P是正方形ABCD外一點,連接OP,以OP為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.

依題意補全圖1;

判斷APBN的數(shù)量關(guān)系及位置關(guān)系,寫出結(jié)論并加以證明;

(2)點PAB延長線上,且∠APO=30°,連接OP,以OP為一邊,作正方形OPMN,且邊ONBC的延長線恰交于點N,連接CM,若AB=2,求CM的長(不必寫出計算結(jié)果,簡述求CM長的過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標.

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,點從點出發(fā)向點移動,速度為每秒1個單位長度,點從點出發(fā)向點移動,速度為每秒2個單位長度. 兩點同時出發(fā),且其中的任何一點到達終點后,另一點的移動同時停止.

1)若兩點的運動時間為,當為何值時,

2)在(1)的情況下,猜想的位置關(guān)系并證明你的結(jié)論.

3)①如圖2,當時,其他條件不變,若(2)中的結(jié)論仍成立,則_________.

②當,時,其他條件不變,若(2)中的結(jié)論仍成立,則_________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的學生進行社會實踐活動時,想利用所學的解直角三角形的知識測量教學樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB長為12,點E是半徑OA的中點,過點ECDABO于點C、D,點P上運動,點Q在線段CP上,且PQ=2CQ,則EQ的最大值是_________.

查看答案和解析>>

同步練習冊答案