【題目】如圖,邊長相等的兩個正方形ABCDOEFG,若將正方形OEFG繞點O按逆時針方向旋轉(zhuǎn)150°,兩個正方形的重疊部分四邊形OMCN的面積( )

A. 不變 B. 先增大再減小 C. 先減小再增大 D. 不斷增大

【答案】A

【解析】

根據(jù)正方形性質(zhì)得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根據(jù)ASA證△BOM≌△CON,推出兩個正方形的重疊部分四邊形OMCN的面積等于SBOC=S正方形ABCD,即可得出選項.

∵四邊形ABCD、四邊形OEFG是兩個邊長相等正方形,

∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,

∴∠BOC-∠COM=∠EOG-∠COM,

即∠BOM=∠CON,

∵在△BOM和△CON中

∴△BOM≌△CON,

∴兩個正方形的重疊部分四邊形OMCN的面積是

SCOM+SCNO=SCOM+SBOM=SBOC=S正方形ABCD,

即不論旋轉(zhuǎn)多少度,陰影部分的面積都等于S正方形ABCD

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行號召,越來越多市民選擇租用共享單車出行已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時間x()之間的函數(shù)關(guān)系根據(jù)圖象回答下列問題:

(1)求手機支付金額y()與騎行時間x()的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道:|5﹣(﹣2|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離.請你借助數(shù)軸進行以下探索:

1)數(shù)軸上表示5與﹣2兩點之間的距離是

2)數(shù)軸上表示x2的兩點之間的距離可以表示為

3)如果|x2|=5,則x=

4)同理|x+3|+|x1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點到﹣31所對應(yīng)的點的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x1|=4,這樣的整數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(請在括號里注明重要的推理依據(jù))

如圖,已知AMBN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D

(1)求∠CBD的度數(shù);

(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.

(3)當點P運動到使∠ACB=ABD時,∠ABC的度數(shù)是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋轉(zhuǎn)后能與重合.

(1)旋轉(zhuǎn)中心是哪一點?

(2)旋轉(zhuǎn)了多少度?

(3)若AE=5㎝,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司的快遞車和貨車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達乙地后卸完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個結(jié)論:

①快遞車從甲地到乙地的速度為100千米/時;②甲、乙兩地之間的距離為120千米;③圖中點B的坐標為(75);④快遞車從乙地返回時的速度為90千米/時.以上4個結(jié)論中正確的是( )

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段能組成鈍角三角形的是( )

A. 3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7

查看答案和解析>>

同步練習(xí)冊答案