精英家教網 > 初中數學 > 題目詳情
把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知EF=CD=16厘米,則球的半徑為    厘米.
10
取EF的中點M,作MN⊥AD于點M,取球心為點O,連接OF,

設OF=x,則OM=16-x,MF=8,
在直角三角形OMF中,OM2+MF2=OF2
即:(16-x)2+82=x2,
解得:x=10
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖中,,,如果將在坐標平面內,繞原點按順時針方向旋轉到的位置.

(1)求點的坐標.
(2)求頂點從開始到點結束經過的路徑長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是的中點,CE⊥AB于點E,BD交CE于點F.

求證:CF=BF.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.

(1)若AB=2,∠P=30°,求AP的長;
(2)若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.

(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知⊙O1與⊙O2的半徑=2、=4,若⊙O1與⊙O2的圓心距=5.則⊙O1與⊙O2的位置關系是___________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為

A. 2        B. 2        C. 2         D. 8

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,P是⊙O外一點,PA、PB切⊙O于點A、B,Q是優(yōu)弧AB上的一點,設,∠AQB=,則的關系是

A. 90°  B.        C. =180° D. 180°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知BD是⊙O的直徑,點A、C在⊙O上,,∠AOB=60°,則∠BDC的度數是( 。

A.20°          B.25°
C.30°          D.40°

查看答案和解析>>

同步練習冊答案