如圖,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P點在BC上,從B點到C點運動(不包括C點),點P運動的速度為2cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為5cm/s.若點P、Q分精英家教網(wǎng)別從B、C同時運動,請解答下面的問題,并寫出探索的主要過程:
(1)經(jīng)過多少時間后,P、Q兩點的距離為5
2
cm2?
(2)經(jīng)過多少時間后,S△PCQ的面積為15cm2
(3)請用配方法說明,何時△PCQ的面積最大,最大面積是多少?
分析:(1)根據(jù)勾股定理PC2+CQ2=PQ2,便可求出經(jīng)過1s后,P、Q兩點的距離為5
2
cm2
(2)根據(jù)三角形的面積公式S△PCQ=
1
2
×PC×CQ便可求出經(jīng)過2或1.5s后,S△PCQ的面積為15cm2
(3)根據(jù)三角形的面積公式S△PCQ=
1
2
×PC×CQ以及二次函數(shù)最值便可求出t=1.75s時△PCQ的面積最大.
解答:解:(1)設(shè)經(jīng)過ts后,P、Q兩點的距離為5
2
cm,
ts后,PC=7-2t cm,CQ=5t cm,
根據(jù)勾股定理可知PC2+CQ2=PQ2,
代入數(shù)據(jù)(7-2t)2+(5t)2=(5
2
)
2
;
解得t=1或t=-
1
29
(不合題意舍去);

(2)設(shè)經(jīng)過ts后,S△PCQ的面積為15cm2
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
1
2
×PC×CQ
=
1
2
×(7-2t)×5t=15
解得t1=2,t2=1.5,
經(jīng)過2或1.5s后,S△PCQ的面積為15cm2

(3)設(shè)經(jīng)過ts后,△PCQ的面積最大,
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
1
2
×PC×CQ=
1
2
×(7-2t)×5t=
5
2
×(-2t2+7t)
當t=-
b
2a
時,即t=
7
2×2
=1.75s時,△PCQ的面積最大,
即S△PCQ=
1
2
×PC×CQ=
1
2
×(7-2×1.75)×5×1.752=
245
16

當時間為1.75秒時,最大面積為
245
16
點評:本題主要結(jié)合勾股定理和三角形面積公式的求法考查了二次函數(shù)的應(yīng)用,是各地中考的熱點,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案