精英家教網(wǎng)如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長(zhǎng)均為2,且AC與DE在同一直線上,開(kāi)始時(shí)點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)
分析:此題可分為兩段求解,即C從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)和A從D點(diǎn)運(yùn)動(dòng)到E點(diǎn),列出面積隨動(dòng)點(diǎn)變化的函數(shù)關(guān)系式即可.
解答:解:設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y∴
當(dāng)C從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)時(shí),即0≤x≤2時(shí),y=
1
2
×2×2-
1
2
(2-x)×(2-x)
=-
1
2
x2+2x

當(dāng)A從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)時(shí),即2<x≤4時(shí),y=
1
2
×[2-(x-2)]×[2-(x-2)]
=
1
2
x2-4x+8

∴y與x之間的函數(shù)關(guān)系
y=-
1
2
x2+2x(0≤x≤2)
y=
1
2
x2-4x+8(2<x≤4)

由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對(duì)應(yīng).
故選A.
點(diǎn)評(píng):本題考查的動(dòng)點(diǎn)變化過(guò)程中面積的變化關(guān)系,重點(diǎn)是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰Rt△ABC中,CA=CB=8
2
,點(diǎn)P是AB上一動(dòng)點(diǎn),設(shè)AP=x,操作:在射線AB上截取精英家教網(wǎng)PQ=AP,以PQ為一邊向上作正方形PQMN,設(shè)正方形PQMN與Rt△ABC重疊部分的面積為S.
(1)求S與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC的直角邊長(zhǎng)為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點(diǎn)C1,C1B1⊥AB于點(diǎn)B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點(diǎn)C2,C2B2⊥AB于點(diǎn)B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC中斜邊AB=4,O是AB的中點(diǎn),以O(shè)為圓心的半圓分別與兩腰相切于點(diǎn)D、E,圖中陰影部分的面積是多少?請(qǐng)你把它求出來(lái).(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等腰Rt△OAB的直角邊OA的長(zhǎng)為1,以AB邊上的高OA1為直角邊,按逆時(shí)針?lè)较蜃鞯妊黂t△OA1B1,A1B1與OB相交于點(diǎn)A2.若再以O(shè)A2為直角邊按逆時(shí)針?lè)较蜃鞯妊黂t△OA2B2,A2B2與OB1相交于點(diǎn)A3,按此作法進(jìn)行下去,得到△OA3B3,△OA4B4,…,則△OA6B6的周長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC,AC=BC,以斜邊AB中點(diǎn)O為圓心作⊙O與AC邊相切于點(diǎn)D,交AB于點(diǎn)E,連接DE.
(1)求證:BC為⊙O的切線;
(2)求tan∠CDE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案