精英家教網 > 初中數學 > 題目詳情
如圖,E、F分別為平行四邊形ABCD兩對邊AD、BC的中點,AF與BE交于點G,CE與DF交于點H,則圖中平行四邊形的個數為( 。
分析:首先根據平行四邊形的性質可得AD=BC,AD∥BC,再根據E、F分別為平行四邊形ABCD兩對邊AD、BC的中點可得AE=ED=BF=CF,進而得到四邊形AECF、BEDF都是平行四邊形;然后證明△AGE≌△FGB可得AG=GF,EG=BG,進而得到G為AF、BE中點,再根據三角形中位線的性質可得GH∥AD∥BC,進而得到四邊形AEHG、DEGH、BGHF、CHGF都是平行四邊形.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵E、F分別為平行四邊形ABCD兩對邊AD、BC的中點,
∴AE=ED=
1
2
AD,BF=CF=
1
2
BC,
∴AE=ED=BF=CF,
∴四邊形AECF、BEDF都是平行四邊形;
∵AE∥BF,
∴∠EAG=∠BFG,∠AEG=∠GBF,
在△AGE和△FGB中
∠EAG=∠BFG
AE=BF
∠AEG=∠FBG
,
∴△AGE≌△FGB(ASA),
∴AG=GF,EG=BG,
∴G為AF、BE中點,
同理:H為EC、DF中點,
∴GH∥AD∥BC,
∴四邊形AEHG、DEGH、BGHF、CHGF都是平行四邊形;
故選:C.
點評:此題主要考查了平行四邊形的性質和判定,關鍵是掌握一組對邊平行且相等的四邊形是平行四邊形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

我們所學的幾何知識可以理解為對“構圖”的研究:根據給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據問題構造圖形),并加以研究.
例如:在平面上根據兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點,弦DE精英家教網⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

某商場為了吸引顧客,設立一個轉盤,如圖所示,轉盤被平分為16份.規(guī)定:當顧客每購買500元金額商品時,就能獲得一次轉動機會,如果轉盤的指針正好對準紅、黃、藍區(qū)域,可分別獲得100元,50元,20元的購物券,甲顧客購物530元,他獲得購物券的概率為
3
8
3
8
,他得到100元的購物券的概率為
1
16
1
16

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(24):3.3 圓周角和圓心角的關系(解析版) 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據問題構造圖形),并加以研究.
例如:在平面上根據兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數學 來源:第29章《相似形》中考題集(19):29.5 相似三角形的性質(解析版) 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據問題構造圖形),并加以研究.
例如:在平面上根據兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《圓》(11)(解析版) 題型:解答題

(2008•佛山)我們所學的幾何知識可以理解為對“構圖”的研究:根據給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據問題構造圖形),并加以研究.
例如:在平面上根據兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

同步練習冊答案