【題目】如圖,一艘輪船在小島的北偏東方向距小島的處,沿正西方向航行后到達(dá)小島的北偏西方向的處,則該船行駛的速度為______.
【答案】
【解析】
設(shè)該船行駛的速度為x海里/時(shí),由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=,解方程即可.
解:如圖所示:
設(shè)該船行駛的速度為x海里/時(shí),3小時(shí)后到達(dá)小島的北偏西45°的C處,
由題意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°-60°=30°,
∴AQ=AB=40,BQ=AQ=40,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40=3x,
解得:.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】林城市對(duì)教師試卷講評(píng)課中學(xué)生參與的深度和廣度進(jìn)行評(píng)價(jià),其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全市有16萬名初中學(xué)生,那么在試卷講評(píng)課中,“獨(dú)立思考”的學(xué)生約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點(diǎn),與AB邊交于點(diǎn)D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;
②當(dāng)S最大時(shí),在拋物線的對(duì)稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好數(shù)學(xué)的甲、乙兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為.
(1)請你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;
(2)求滿足關(guān)于x的方程沒有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,取EF的中點(diǎn)G,連接CG,BG,BD,DG,下列結(jié)論:
①BE=CD;
②∠DGF=135°;
③△BEG≌△DCG;
④∠ABG+∠ADG=180°;
⑤若,則3S△BDG=13S△DGF.
其中正確的結(jié)論是_____.(請?zhí)顚懰姓_結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】日照間距系數(shù)反映了房屋日照情況.如圖①,當(dāng)前后房屋都朝向正南時(shí),日照間距系數(shù)=L:(H﹣H1),其中L為樓間水平距離,H為南側(cè)樓房高度,H1為北側(cè)樓房底層窗臺(tái)至地面高度.
如圖②,山坡EF朝北,EF長為15m,坡度為i=1:0.75,山坡頂部平地EM上有一高為22.5m的樓房AB,底部A到E點(diǎn)的距離為4m.
(1)求山坡EF的水平寬度FH;
(2)欲在AB樓正北側(cè)山腳的平地FN上建一樓房CD,已知該樓底層窗臺(tái)P處至地面C處的高度為0.9m,要使該樓的日照間距系數(shù)不低于1.25,底部C距F處至少多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組要測量大樓AB的高度,他們在點(diǎn)C處測得樓頂B的仰角為30°,再往大樓AB方向前進(jìn)至點(diǎn)D處測得樓頂B的仰角為48°,CD=96m,其中點(diǎn)A、D、C在同一直線上.求AD的長和大樓AB的高度(結(jié)果精確到1m)參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com