【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點(diǎn)A1是直線l與y軸的交點(diǎn),以A1O為邊作正方形A1OC1B1,使點(diǎn)C1落在在x軸正半軸上,作射線C1B1交直線l于點(diǎn)A2,以A2C1為邊作正方形A2C1C2B2,使點(diǎn)C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點(diǎn)B4的坐標(biāo)是 ,點(diǎn)Bn的坐標(biāo)是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分) 已知雙曲線y=(x>0),直線l1:y﹣=k(x﹣)(k<0)過定點(diǎn)F且與雙曲線交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2)(x1<x2),直線l2:y=﹣x+.
(1)若k =﹣1,求△OAB的面積S;
(2)若AB= ,求k的值;
(3)設(shè)N(0,2),P在雙曲線上,M在直線l2上且PM∥x軸,問在第二象限內(nèi)是否存在一點(diǎn)Q,使得四邊形QMPN是周長最小的平行四邊形,若存在,請求出Q點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD⊥AB,垂足為D,點(diǎn)F是BC上任意一點(diǎn),F(xiàn)E⊥AB,垂足為E,且∠CDG=∠BFE,∠AGD=80°,求∠BCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90o,
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖2,線段CF 、BD所在直線的位
置關(guān)系為 __________,線段CF 、BD的數(shù)量關(guān)系為 ;
(2)當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖3,①中的結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(-2x2)3·(x2+x2y2+y2)的結(jié)果中次數(shù)是10的項(xiàng)的系數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O、點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)的取值范圍;
(2)0可能是方程一個(gè)根嗎?若是,求出它的另一個(gè)根;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點(diǎn)上.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1向左平移3個(gè)單位后得到△A2B2C2 , 畫出△A2B2C2 , 并寫出頂點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣2x+k=0有實(shí)數(shù)根,則k的取值范圍是( )
A. k<1B. k<4C. k≤1D. k≤4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com