【題目】如圖在ABC中,AB=AC=9,BAC=120°,AD是ABC的中線,AE是BAD的角平分線,DFAB交AE的延長(zhǎng)線于點(diǎn)F,求DF的長(zhǎng).

【答案】4.5.

【解析】

試題分析:由等腰三角形三線合一的性質(zhì)可得ADBC,BAD=CAD,再求出DAE=EAB=30°,然后由平行線的性質(zhì)求出F=BAE=30°,從而得到DAE=F,再由等角對(duì)等邊求出AD=DF,然后求出B=30°,由直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答.

試題解析:解:AB=AC,AD是ABC的中線,ADBC,BAD=CAD=BAC=×120°=60°,AE是BAD的角平分線,∴∠DAE=EAB=BAD=×60°=30°,DFAB,∴∠F=BAE=30°,∴∠DAE=F=30°,AD=DF,∵∠B=90°﹣60°=30°,AD=AB=×9=4.5,DF=4.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸分別為、兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.動(dòng)點(diǎn)、分別在線段、上(點(diǎn)不與點(diǎn)重合),滿足.

(1)點(diǎn)坐標(biāo)是      

(2)當(dāng)點(diǎn)在什么位置時(shí),,說明理由.

(3)當(dāng)為等腰三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O在直線MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)將∠AOB繞著點(diǎn)O順時(shí)針轉(zhuǎn)到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,AD=9,AB=6,若點(diǎn)G、H、M、N分別在AB、CD、AD、BC上,線段MN與GH交于點(diǎn)K.若∠GKM=45°,NM=3 ,則GH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解2017年八年級(jí)學(xué)生課外書籍借閱情況.從中隨機(jī)抽取了40名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果列出如下的表格,并繪制成如圖所示的扇形統(tǒng)計(jì)圖,其中科普類本數(shù)占這40名學(xué)生借閱總本數(shù)的40%.

(1)求表格中字母m的值及扇形統(tǒng)計(jì)圖中教輔類所對(duì)應(yīng)的圓心角α的度數(shù);

(2)該校2017年八年級(jí)有500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生共借閱教輔類書籍約多少本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,DE,F分別為ABBC,CA上的點(diǎn),且,

(1)求證:;

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與理解: 圖1是邊長(zhǎng)分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.

操作與證明:
(1)操作:固定△ABC,將△C′DE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)操作:若將圖1中的△C′DE,繞點(diǎn)C按順時(shí)針方向任意旋轉(zhuǎn)一個(gè)角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作過程,請(qǐng)你猜想當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最大是多少?當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最小是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線EF與AB交于點(diǎn)M,與CD交于點(diǎn)O,OG平分∠DOF,若∠COM=120°,∠EMB= ∠COF.

(1)求∠FOG的度數(shù);

(2)寫出一個(gè)與∠FOG互為同位角的角;

(3)求∠AMO的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案