如圖,等邊△ABC的邊長(zhǎng)為3,P為BC上一點(diǎn),且BP=1,D為AC上一點(diǎn),若∠APD=60°,則CD的長(zhǎng)為   
【答案】分析:根據(jù)等邊三角形性質(zhì)求出AB=BC=AC=3,∠B=∠C=60°,推出∠BAP=∠DPC,證△BAP∽△CPD,得出=,代入求出即可.
解答:解:∵△ABC是等邊三角形,
∴AB=BC=AC=3,∠B=∠C=60°,
∴∠BAP+∠APB=180°-60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°-60°=120°,
∴∠BAP=∠DPC,
即∠B=∠C,∠BAP=∠DPC,
∴△BAP∽△CPD,
=
∵AB=BC=3,CP=BC-BP=3-1=2,BP=1,
=,
解得:CD=
故答案為:
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定,等邊三角形的性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,關(guān)鍵是推出△BAP∽△CPD,主要考查了學(xué)生的推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC的邊長(zhǎng)為l,取邊AC的中點(diǎn)D,在外部畫(huà)出一個(gè)新的等邊三角形△CDE,如此繞點(diǎn)C順時(shí)針繼續(xù)下去,直到所畫(huà)等邊三角形的一邊與△ABC的BC邊重疊為止,此時(shí)這個(gè)三角形的邊長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,等邊△ABC的三條角平分線相交于點(diǎn)O,OD∥AB交BC于D,OE∥AC交BC于點(diǎn)E,那么這個(gè)圖形中的等腰三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為6,點(diǎn)D、E分別在AB、AC上,且AD=AE=2,直線l過(guò)點(diǎn)A,且l∥BC,若點(diǎn)F從點(diǎn)B開(kāi)始以每秒1個(gè)單位長(zhǎng)的速度沿射線BC方向運(yùn)動(dòng),設(shè)F點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t>0時(shí),直線DF交l于點(diǎn)G,GE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)當(dāng)t為何值時(shí),AG=AE?
(2)請(qǐng)證明△GFH的面積為定值;
(3)當(dāng)t為何值時(shí),點(diǎn)F和點(diǎn)C是線段BH的三等分點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC的邊長(zhǎng)為2,AD是△ABC的角平分線,
(1)求AD的長(zhǎng);
(2)取AB的中點(diǎn)E,連接DE,寫(xiě)出圖中所有與BD相等的線段.(不要求說(shuō)理)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC的邊長(zhǎng)為1cm,D、E分別是AB、AC上的點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處,且點(diǎn)A′在△ABC外部,則陰影部分圖形的周長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案