【題目】 如圖,Rt△ABC中,∠C = 90°,把Rt△ABC繞著B點逆時針旋轉(zhuǎn),得到Rt△DBE,點E在AB上.
(1)若∠BDA = 70°,求∠BAC的度數(shù).
(2)若BC = 8,AC = 6,求△ABD中AD邊上的高.
【答案】解:(1) 由旋轉(zhuǎn)得△ACB≌△DEB
∴BD = BA
∴∠BAD =∠BDA =70°
∴∠ABD =40°
∴∠ABC =∠ABD =40°
∵∠C =90°
∴∠BAC =50°
(2) ∵BC = 8,AC = 6,∠C =90°
∴
∵∠DEB =∠C =且BE = BC = 8,DE ="AC" = 6
∴AE =" AB" – BE = 2
在Rt△DEA中,
設(shè)AD邊上的高為h
∴
∴
【解析】該題主要考查了旋轉(zhuǎn)變換的性質(zhì)及其應(yīng)用問題.
【考點精析】認(rèn)真審題,首先需要了解三角形的面積(三角形的面積=1/2×底×高),還要掌握三角形的內(nèi)角和外角(三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解方程組的方法,回答問題.
解方程組
解:由①﹣②得2x+2y=2即x+y=1③
③×16得16x+16y=16④
②﹣④得x=﹣1,從而可得y=2
∴原方程組的解是
(1)請你仿照上面的解法解方程組;
(2)請大膽猜測關(guān)于x、y的方程組
的解是什么?并利用方程組的解加以驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人練習(xí)跑步,同時從學(xué)校出發(fā),跑步去體育場鍛煉,兩人與學(xué)校的距離 y(米)與出發(fā)時間 x(分)之間的關(guān)系如圖所示,則下列說法中:
①甲的速度是100米/分;
②4分鐘時,甲,乙相遇;
③甲,乙兩人相距50米的時間為3分鐘或5分鐘時;
④乙用了8分鐘跑到體育場.
正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為1的圓從原點沿數(shù)軸向左滾動一周,圓上與原點重合的點O到達(dá)O′,設(shè)點O′表示的數(shù)為a.
(1)求a的值;
(2)求﹣(a﹣)﹣π的算術(shù)平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD,點E在AD上,連接CE,點F為CE中點,連接DF,并且DF=EF.
(1)求證:平行四邊形ABCD是矩形;
(2)如圖2,過點B作BH⊥CE,垂足為H,連接AH,若∠AHB=45°,求證:AE=CD;
(3)如圖3,在(2)的條件下,過點A作AK⊥BH,垂足為N,AK與BC交于點K,若四邊形ABHE的面積為128,BK=2,求線段HF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板如圖甲放置,其中 , ,斜邊AB=6cm,DC=7cm把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時AB與CD1相交于點O,與D1E1相交于點F .
(1)求 的度數(shù);
(2)求線段AD1的長;
(3)若把三角形D1CE1繞著點 C 順時針再旋轉(zhuǎn)30°得△D2CE2 , 這時點B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小明和小紅玩紙片拼圖游戲.發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些圖形來解釋某些等式,比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2.
(1)圖③可以解釋為等式: .
(2)圖④中陰影部分的面積為 .觀察圖④請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 .
(3)如圖⑤,小明利用7個長為b,寬為a的長方形拼成如圖所示的大長方形;
①若AB=4,若長方形AGMB的面積與長方形EDHN的面積的差為S,試計算S的值(用含a,b的代數(shù)式表示)
②若AB為任意值,且①中的S的值為定值,求a與b的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點O是對角線AC上一點,連接BO、DO,△COD、△AOD、△AOB、△BOC的面積分別是S1、S2、S3、S4.下列關(guān)于S1、S2、S3、S4的等量關(guān)系式中錯誤的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com