【題目】(1)解方程組 :
(2)解不等式
(3)利用簡(jiǎn)單方法計(jì)算:
(4)因式分解:
【答案】(1);(2);(3)13.2;(4)
【解析】
(1)先變成一元一次方程,求出x的值,再求出y即可;
(2)先求出每個(gè)不等式的解集,再求出不等式組的解集即可;
(3)先分解因式,再求出即可;
(4)提取公因式即可.
解:(1)整理得:
①×3+②×2得:19x=114,
解得:x=6,
把x=6代入①得:18+4y=16,
解得:y=-0.5,
所以原方程組的解是:;
(2)原不等式組化為:
∵解不等式①得:x≥2,
解不等式②得:x<5,
∴不等式組的解集是2≤x<5;
(3)2.34×13.2+0.66×13.2-26.4
=2.34×13.2+0.66×13.2-13.2×2
=13.2×(2.34+0.66-2)
=13.2×1
=13.2;
(4)-4m3+12m2-6m
=-2m(2m2-6m+3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,將△ABD沿AD折疊得到△AED,點(diǎn)E落在CD上,∠B=50°,∠C=30°.
(1)填空:∠BAD= 度;
(2)求∠CAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在和中,,,將如圖擺放,使得的兩條邊分別經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)當(dāng)將如圖1擺放時(shí),則_________度.
(2)當(dāng)將如圖2擺放時(shí),請(qǐng)求出的度數(shù),并說(shuō)明理由.
(3)能否將擺放到某個(gè)位置時(shí),使得、同時(shí)平分和?直接寫(xiě)出結(jié)論_______(填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn),但始終保持EF⊥DE交BC于點(diǎn)F.
(1)求證:△ADE∽△BEF;
(2)若正方形的邊長(zhǎng)為4,設(shè)AE=x,BF=y,求y與x之間的函數(shù)解析式;
(3)當(dāng)x取何值時(shí),y有最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類(lèi)的溫馨提示牌和垃圾箱,若購(gòu)買(mǎi)2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買(mǎi)溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,若四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)聯(lián)接BC交x軸于點(diǎn)F.y軸上是否存在點(diǎn)P,使得△POC與△BOF相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長(zhǎng)分別是5,6和8,因?yàn)?/span>,所以這個(gè)三角形是常態(tài)三角形。
(1)若△ABC三邊長(zhǎng)分別是2,和4,則此三角形_________常態(tài)三角形(填“是”或“不是”);
(2)若Rt△ABC是常態(tài)三角形,則此三角形的三邊長(zhǎng)之比為__________________(請(qǐng)按從小到大排列);
(3)如圖,Rt△ABC中,∠ACB=90°,BC=6,點(diǎn)D為AB的中點(diǎn),連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,BE平分∠ABC且交邊AD于點(diǎn)E,如果AB=6cm,BC=10cm,
試求:⑴□ABCD的周長(zhǎng);⑵線段DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com