【題目】

如圖1,拋物線y=ax2+bx+ ,經(jīng)過(guò)A(1,0)、B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM= SABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)(不需要寫過(guò)程).

【答案】
(1)解:將點(diǎn)A(1,0),B(7,0)代入拋物線的解析式得:

解得:a= ,b=﹣2.

∴拋物線的解析式為y= x2﹣2x+


(2)解:存在點(diǎn)M,使得SABM= SABC

理由:如圖所示:過(guò)點(diǎn)C作CK⊥x軸,垂足為K.

∵△ABC為等邊三角形,

∴AB=BC=AC=6,∠ACB=60°.

∵CK⊥AB,

∴KA=BK=3,∠ACK=30°.

∴CK=3

∴SABC= ABCK= ×6×3=9

∴SABM= ×9 =12.

設(shè)M(a, a2﹣2a+ ).

AB|y|=12,即 ×6×( a2﹣2a+ )=12,

解得:a1=9,a2=﹣1.

∴點(diǎn)M的坐標(biāo)為(9,4)或(﹣1,4).


(3)解:①結(jié)論:AF=BE,∠APB=120°.

∵△ABC為等邊三角形,

∴BC=AB,∠C=∠ABF.

∵在△BEC和△AFB中 ,

∴△BEC≌△AFB.

∴AF=BE,∠CBE=∠BAF.

∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.

∴∠APB=180°﹣60°=120°.

②當(dāng)AE≠BF時(shí),由①可知點(diǎn)P在以M為圓心,在以AB為弦的圓上,過(guò)點(diǎn)M作MK⊥AB,垂足為k.

∵∠APB=120°,

∴∠N=60°.

∴∠AMB=120°.

又∵M(jìn)K⊥AB,垂足為K,

∴AK=BK=3,∠AMK=60°.

∴AK=2

∴點(diǎn)P運(yùn)動(dòng)的路徑= =

當(dāng)AE=BF時(shí),點(diǎn)P在AB的垂直平分線上時(shí),如圖所示:過(guò)點(diǎn)C作CK⊥AB,則點(diǎn)P運(yùn)動(dòng)的路徑=CK的長(zhǎng).

∵AC=6,∠CAK=60°,

∴KC=3

∴點(diǎn)P運(yùn)動(dòng)的路徑為3

綜上所述,點(diǎn)P運(yùn)動(dòng)的路徑為3


【解析】(1)將點(diǎn)A(1,0),B(7,0)代入拋物線的解析式得到關(guān)于a、b方程組,解關(guān)于a、b的方程組即可求得a、b的值;
(2)過(guò)點(diǎn)C作CK⊥x軸,垂足為K.依據(jù)等邊三角形的性質(zhì)可求得CK然后依據(jù)三角形的面積公式結(jié)合已知條件可求得S△ABM的面積,然后依據(jù)三角形的面積公式可得到關(guān)于a的方程,從而可得到點(diǎn)M的坐標(biāo);
(3)①首先證明△BEC≌△AFB,依據(jù)全等三角形的性質(zhì)可知:AF=BE,∠CBE=∠BAF,然后通過(guò)等量代換可得∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°,最后依據(jù)三角形的內(nèi)角和定理可求得∠APB;
②當(dāng)AE≠BF時(shí),由①可知點(diǎn)P在以AB為直徑的圓上,過(guò)點(diǎn)M作ME⊥AB,垂足為E.先求得⊙M的半徑,然后依據(jù)弧長(zhǎng)公式可求得點(diǎn)P運(yùn)動(dòng)的路徑;當(dāng)AE=BF時(shí),點(diǎn)P在AB的垂直平分線上時(shí),過(guò)點(diǎn)C作CK⊥AB,則點(diǎn)P運(yùn)動(dòng)的路徑=CK的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右依次記為A1、A2、A3、…、An,已知第1個(gè)正方形中的一個(gè)頂點(diǎn)A1的坐標(biāo)為(1,1),則點(diǎn)A2019的縱坐標(biāo)為( )

A. 2019 B. 2018 C. 22018 D. 22019

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC 中,AB=ACD、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△ACF,連接DF.下列結(jié)論中:①∠DAF=45° ②△≌△ AD平分∠EDF ;正確的有______________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線交于點(diǎn)E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )

A. 65° B. 66° C. 70° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.

(1)sin2A1+cos2A1= , sin2A2+cos2A2= , sin2A3+cos2A3=;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A=
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA= ,求cosA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的角平分線CDBE相交于F,∠A=90°,EG//BC,且G,下列結(jié)論:①;②平分;③;④;其中正確的結(jié)論是( )

A.只有①③B.只有①③④C.只有②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,1)且經(jīng)過(guò)點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則SBCD:SABO=( )

A.8:1
B.6:1
C.5:1
D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1: ,求旗桿AB的高度( ,結(jié)果精確到個(gè)位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

同步練習(xí)冊(cè)答案