作业宝已知:如圖,點E為四邊形ABCD外一點,連接EB、EA、ED、EC,其中EA、ED與BC交點分別為M、N,且AD∥BC,AE=DE,BE=CE.求證:AB=DC.

證明:∵BE=CE,
∴∠EBM=∠ECN,
∵∠AMB=∠BEM+∠EBM,∠DNC=∠CEN+∠ECN,
∴∠AEB=∠DEC,
在△ABE和△DEC中,,
∴△ABE≌△DEC(SAS),
∴AB=CD.
分析:根據(jù)外角的性質(zhì)可得出∠AMB=∠BEM+∠EBM,∠DNC=∠CEN+∠ECN,再由BE=CE,得∠EBM=∠ECN,從而得出∠AEB=∠DEC,則△ABE≌△DEC,則AB=CD.
點評:本題考查了全等三角形的判定和性質(zhì)以及平行線的性質(zhì),是基礎知識要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,平面直角坐標系xOy中,點A、B的坐標分別為A(4,0),B(0,-4),P為y軸上精英家教網(wǎng)B點下方一點,PB=m(m>0),以AP為邊作等腰直角三角形APM,其中PM=PA,點M落在第四象限.
(1)求直線AB的解析式;
(2)用m的代數(shù)式表示點M的坐標;
(3)若直線MB與x軸交于點Q,判斷點Q的坐標是否隨m的變化而變化,寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖1,點G是BC的中點,點H在AF上,動點P以每秒2cm的速度沿圖1的邊線運動,運動路徑為:G→C→D→E→F→H,相應的△ABP的面積y(cm2)關(guān)于運動時間t(s)的函數(shù)圖象如圖2,若AB=6cm,則下列四個結(jié)論中正確的個數(shù)有( 。

①圖1中的BC長是8cm;②圖2中的M點表示第4秒時y的值為24;③圖1中的CD長是4cm;
④圖1中的DE長是3cm;⑤圖2中的Q點表示第8秒時y的值為33;⑥圖2中的N點表示第12秒時y的值為18cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進行適當?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大八年級版 2009-2010學年 第18期 總第174期 華師大版 題型:047

已知:如圖,點、、、分別是正方形ABCD四條邊上的點,且△A≌△B≌△C≌△D

求證:四邊形為正方形.

查看答案和解析>>

同步練習冊答案