已知拋物線y=-x2+2mxm2m+2.

  (1)判斷拋物線的頂點(diǎn)與直線Ly=-x+2的位置關(guān)系;

  (2)設(shè)該拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM?ON=4,且OM≠ON時(shí),求出這條拋物線的解析式;

(3)直線L交x軸于點(diǎn)A,(2)中所求拋物線的對(duì)稱軸與x軸交于點(diǎn)B.那么在對(duì)稱軸上是否存在點(diǎn)P,使⊙P與直線L和x軸同時(shí)相切.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1)由拋物線,得頂點(diǎn)坐標(biāo)為

m,-m+2),  顯然滿足y=-x+2

∴ 拋物線的頂點(diǎn)在直線L上.                     

(2)設(shè)M,0),N,0),且. 由OM?ON=4,,OMON,得

 ∵ ,  ∴ 

當(dāng)時(shí),

當(dāng)時(shí),<0,此方程無(wú)解    

 ∵ △1=(2m)-4(m+m-2)=-4m+8=-4m+8>0. ∴ m<2.

故取m=-3. 

則拋物線的解析式為.  

。3)拋物線的對(duì)稱軸為x=-3,頂點(diǎn)(-3,5).

 依題意,∠CAB=∠ACB=45°.

若點(diǎn)Px軸的上方,設(shè)(-3,a)(a>0),則點(diǎn)到直線L的距離a(如圖), ∴ △是等腰直角三角形.

 ∴ ,. ∴ ,5.                        

 若點(diǎn)Px軸的下方,設(shè)(-3,-b)(b>0), 則點(diǎn)到直線L的距離b(如圖),同理可得△為等腰直角三角形,

∴ ,. ∴ ,.                       

 ∴ 滿足條件的點(diǎn)有兩個(gè),即(-3,)和(-3,).    

                                       

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.

1.求b+c的值

2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆廣東省深圳市華富中學(xué)初三上學(xué)期期中數(shù)學(xué)卷 題型:解答題

已知拋物線y=-x2mxm+2.  
(Ⅰ)若拋物線與x軸的兩個(gè)交點(diǎn)A、B分別在原點(diǎn)的兩側(cè),并且AB,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點(diǎn),若拋物線上存在關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)M、N,并且 △MNC的面積等于27,試求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年度濰坊市高密七年級(jí)第二學(xué)期期末考試數(shù)學(xué) 題型:解答題

(11·兵團(tuán)維吾爾)(8分)已知拋物線y=-x2+4x-3與x軸交于A、B兩點(diǎn)(A
點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中,用列表描點(diǎn)法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時(shí),函
數(shù)值大于零;
(3)將此拋物線的圖象向下平移一個(gè)單位,請(qǐng)寫出平稱后圖象的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建尤溪初中畢業(yè)學(xué)業(yè)質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.

1.求b+c的值

2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年蘇州市區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

(本題滿分5分)已知拋物線y=-x2bx+c,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0),求此拋物線的解析式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案