【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90度.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過計(jì)算說(shuō)明OE是否平分∠BOC.
【答案】
(1)解:圖中有9個(gè)小于平角的角
(2)解:因?yàn)镺D平分∠AOC,∠AOC=50°
所以∠AOD= =25°,所以∠BOD=180°﹣25°=155°
(3)解:因?yàn)椤螧OE=180°﹣∠DOE﹣∠AOD=180°﹣90°﹣25°=65°
∠COE=90°﹣25°=65°
所以∠BOE=∠COE.即OE平分∠BOC
【解析】(1)按照順序數(shù),以O(shè)A為邊順時(shí)針數(shù)有3個(gè)角,以O(shè)D為邊的有3個(gè)角,以O(shè)C為邊的有2個(gè)角,以O(shè)E為邊的有1個(gè)角,一共由9個(gè)角。
(2)觀察圖形及已知條件∠BOD=180°-∠AOD,只需求出∠AOD的度數(shù),根據(jù)角平分線的定義易求出。
(3)根據(jù)題意分別求出∠BOE和∠COE的度數(shù)即可判斷。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù),下面給出了求∠AGD的度數(shù)的過程,將此補(bǔ)充完整并在括號(hào)里填寫依據(jù).
【解】∵EF∥AD(已知)
∴∠2=()
又∵∠1=∠2(已知)
∴∠1=∠3(等式性質(zhì)或等量代換)
∴AB∥()
∴∠BAC+=180°()
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線的解析式;
(2)若點(diǎn)P在x軸上,且,求點(diǎn)P的坐 標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若AD∥BC,∠A=∠D.
(1)猜想∠C與∠ABC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若CD∥BE,∠D=50°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E是AD上的一點(diǎn),且AE=AD,對(duì)角線AC,BD交于點(diǎn)O,EC交BD于F,BE交AC于G,如果平行四邊形ABCD的面積為S,那么,△GEF的面積為( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)械廠加工車間有84名工人,平均每人每天加工大齒輪16個(gè)或者小齒輪10個(gè),已知1個(gè)大齒輪與2個(gè)小齒輪剛好配成一套,問分別安排多少名工人加工大,小齒輪,才能使每天加工的大小齒輪剛好配套?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com